Home
Class 11
MATHS
If a+ bi = (c + i)/(c-i), a, b , c in R,...

If `a+ bi = (c + i)/(c-i), a, b , c in R`, show that `a^(2) + b^(2)=1 and (b)/(a)= (2c)/(c^(2)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \( a + bi = \frac{c + i}{c - i} \), where \( a, b, c \in \mathbb{R} \), then \( a^2 + b^2 = 1 \) and \( \frac{b}{a} = \frac{2c}{c^2 - 1} \). ### Step 1: Find the conjugate of the expression We start with the given expression: \[ a + bi = \frac{c + i}{c - i} \] The conjugate of \( a + bi \) is \( a - bi \). The conjugate of the right-hand side can be calculated as follows: \[ \overline{\left(\frac{c + i}{c - i}\right)} = \frac{\overline{(c + i)}}{\overline{(c - i)}} = \frac{c - i}{c + i} \] ### Step 2: Multiply the expressions Now, we multiply \( a + bi \) and \( a - bi \): \[ (a + bi)(a - bi) = a^2 + b^2 \] On the right-hand side, we have: \[ \frac{c + i}{c - i} \cdot \frac{c - i}{c + i} = 1 \] Thus, we can equate the two sides: \[ a^2 + b^2 = 1 \] ### Step 3: Find the values of \( a \) and \( b \) Next, we will find the individual values of \( a \) and \( b \). We can express \( a + bi \) and \( a - bi \) as: \[ a + bi = \frac{c + i}{c - i} \] \[ a - bi = \frac{c - i}{c + i} \] ### Step 4: Add the two equations Adding the two equations: \[ (a + bi) + (a - bi) = \frac{c + i}{c - i} + \frac{c - i}{c + i} \] This simplifies to: \[ 2a = \frac{(c + i)(c + i) + (c - i)(c - i)}{(c - i)(c + i)} \] Calculating the numerator: \[ (c + i)(c + i) = c^2 + 2ci - 1 \] \[ (c - i)(c - i) = c^2 - 2ci - 1 \] Adding these gives: \[ 2c^2 - 2 = 2c^2 - 2 \] Thus, we have: \[ 2a = \frac{2(c^2 - 1)}{c^2 + 1} \] So, \[ a = \frac{c^2 - 1}{c^2 + 1} \] ### Step 5: Subtract the two equations Now, subtracting the two equations: \[ (a + bi) - (a - bi) = \frac{c + i}{c - i} - \frac{c - i}{c + i} \] This simplifies to: \[ 2bi = \frac{(c + i)(c + i) - (c - i)(c - i)}{(c - i)(c + i)} \] Calculating the numerator: \[ (c + i)(c + i) - (c - i)(c - i) = 2i(2c) \] Thus, we have: \[ 2bi = \frac{4ci}{c^2 + 1} \] So, \[ b = \frac{2c}{c^2 - 1} \] ### Conclusion We have shown that: 1. \( a^2 + b^2 = 1 \) 2. \( \frac{b}{a} = \frac{2c}{c^2 - 1} \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

If a+i b=(c+i)/(c-i) , where c is real, prove that: a^2+b^2=1 and b/a=(2c)/(c^2-1)dot

(i) If a , b , c are in continued proportion, show that : (a^(2) + b^(2))/(b(a+c)) = (b(a + c))/(b^(2) + c^(2)) . (ii) If a , b , c are in continued proportion and a(b - c) = 2b , prove that : a - c = (2(a + b))/(a) . (iii) If (a)/(b) = (c)/(d) show that : (a^(3)c + ac^(3))/(b^(3)d +bd^(3)) = ((a + c)^(4))/((b + d)^(4)) .

If a,b,c are in AP, than show that a^(2)(b+c)+b^(2)(c+a)+c^(2)(a+b)=(2)/(9)(a+b+c)^(3) .

Show that a^(2)(1+b^(2))+b^(2)(1+c^(2))+c^(2)(1+a^(2))gt abc

If a, b, c are in G.P. , then show that (i) (a^(2) - b^(2))(b^(2) + c^(2)) = (b^(2) -c^(2)) (a^(2) + b^(2)) (ii) a( b^(2) + c^(2)) = c (a^(2) + b^(2))

If a, b, c , d are in G.P. , then shown that (i) (a + b)^(2) , (b +c)^(2), (c + d)^(2) are in G.P. (ii) (1)/(a^(2) + b^(2)), (1)/(b^(2) +c^(2)), (1)/(c^(2) + d^(2)) are in G.P.

If a, b, c are in G.P. show that (1)/(a^(2)),(1)/(b^(2)),(1)/(c^(2)) are also in G.P.

If a, b, c are positive real numbers then show that (i) (a + b + c) ((1)/(a) + (1)/(b) +(1)/(c)) ge 9 (ii) (b+c)/(a) +(c +a)/(b) + (a+b)/(c) ge 6

(i) a , b, c are in H.P. , show that (b + a)/(b -a) + (b + c)/(b - c) = 2 (ii) If a^(2), b^(2), c^(2) are A.P. then b + c , c + a , a + b are in H.P. .

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

ICSE-COMPLEX NUMBERS-Chapter Test
  1. If a+ bi = (c + i)/(c-i), a, b , c in R, show that a^(2) + b^(2)=1 and...

    Text Solution

    |

  2. Find the square root of 5-12i

    Text Solution

    |

  3. Find the locus of a complex number z=x +yi, satisfying the relation |z...

    Text Solution

    |

  4. Express (13i)/(2-3i) in the form A + Bi

    Text Solution

    |

  5. If z= x +yi and (|z-1-i|+4)/(3|z-1-i|-2)=1, show that x^(2) + y^(2) -2...

    Text Solution

    |

  6. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  7. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  8. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  9. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  10. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  11. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  12. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  13. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  14. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  15. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  16. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  17. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  18. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  19. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  20. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  21. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |