Home
Class 11
MATHS
If z= ((sqrt3)/(2) + (i)/(2))^(107) + ((...

If `z= ((sqrt3)/(2) + (i)/(2))^(107) + ((sqrt3)/(2)-(i)/(2))^(107)`, then show that Im(z)=0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ z = \left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^{107} + \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^{107} \] ### Step 1: Rewrite the terms in polar form The first term can be expressed in polar form. We recognize that: \[ \frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{6}\right) \quad \text{and} \quad \frac{1}{2} = \sin\left(\frac{\pi}{6}\right) \] Thus, we can write: \[ \frac{\sqrt{3}}{2} + \frac{i}{2} = \cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right) = e^{i\frac{\pi}{6}} \] Similarly, for the second term: \[ \frac{\sqrt{3}}{2} - \frac{i}{2} = \cos\left(\frac{\pi}{6}\right) - i\sin\left(\frac{\pi}{6}\right) = e^{-i\frac{\pi}{6}} \] ### Step 2: Substitute into the expression for z Now substituting back into the expression for \( z \): \[ z = \left(e^{i\frac{\pi}{6}}\right)^{107} + \left(e^{-i\frac{\pi}{6}}\right)^{107} \] Using the property of exponents, we can simplify this to: \[ z = e^{i\frac{107\pi}{6}} + e^{-i\frac{107\pi}{6}} \] ### Step 3: Use Euler's formula Using Euler's formula \( e^{ix} + e^{-ix} = 2\cos(x) \): \[ z = 2\cos\left(\frac{107\pi}{6}\right) \] ### Step 4: Simplify the angle Now we need to simplify \( \frac{107\pi}{6} \). We can reduce this angle by subtracting \( 2\pi \): \[ \frac{107\pi}{6} - 2\pi = \frac{107\pi}{6} - \frac{12\pi}{6} = \frac{95\pi}{6} \] Continuing to reduce: \[ \frac{95\pi}{6} - 2\pi = \frac{95\pi}{6} - \frac{12\pi}{6} = \frac{83\pi}{6} \] Continuing this process: \[ \frac{83\pi}{6} - 2\pi = \frac{83\pi}{6} - \frac{12\pi}{6} = \frac{71\pi}{6} \] \[ \frac{71\pi}{6} - 2\pi = \frac{71\pi}{6} - \frac{12\pi}{6} = \frac{59\pi}{6} \] \[ \frac{59\pi}{6} - 2\pi = \frac{59\pi}{6} - \frac{12\pi}{6} = \frac{47\pi}{6} \] \[ \frac{47\pi}{6} - 2\pi = \frac{47\pi}{6} - \frac{12\pi}{6} = \frac{35\pi}{6} \] \[ \frac{35\pi}{6} - 2\pi = \frac{35\pi}{6} - \frac{12\pi}{6} = \frac{23\pi}{6} \] \[ \frac{23\pi}{6} - 2\pi = \frac{23\pi}{6} - \frac{12\pi}{6} = \frac{11\pi}{6} \] Now we can use \( \frac{11\pi}{6} \) directly: ### Step 5: Calculate the cosine Now we can evaluate: \[ z = 2\cos\left(\frac{11\pi}{6}\right) \] Since \( \cos\left(\frac{11\pi}{6}\right) = \cos\left(-\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \): \[ z = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \] ### Step 6: Determine the imaginary part Since \( z = \sqrt{3} + 0i \), we see that the imaginary part of \( z \) is: \[ \text{Im}(z) = 0 \] Thus, we have shown that: \[ \text{Im}(z) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

If z=((sqrt3)/(2)+(1)/(2)i)^5+((sqrt3)/(2)-(i)/(2))^5 , then (a) im(z)=0 (b) Re(z)gt0 , Im(z)gt0 (c) Re(z)gt0 , Im(z)lt0 (d) Re(z)=3

If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=0.

If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5 , then prove that Im(z)=0

If z=[(sqrt(3)/2)+i/2]^5+[((sqrt(3))/2)-i/2]^5 , then a. R e(z)=0 b. I m(z)=0 c. R e(z)>0 d. R e(z)>0,I m(z)<0

show that ((sqrt(3)+i)/2)^6+((i-sqrt(3))/2)^6=-2

Show that (sqrt3/2 + i/2)^3 = i

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

If z=i log(2-sqrt(3)) then cosz

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

if z = (sqrt 3 ) /(2) + (i)/(2) ( i=sqrt ( -1) ) , then ( 1 + iz + z^5 + iz^8)^9 is equal to:

ICSE-COMPLEX NUMBERS-Chapter Test
  1. If z= ((sqrt3)/(2) + (i)/(2))^(107) + ((sqrt3)/(2)-(i)/(2))^(107), the...

    Text Solution

    |

  2. Find the square root of 5-12i

    Text Solution

    |

  3. Find the locus of a complex number z=x +yi, satisfying the relation |z...

    Text Solution

    |

  4. Express (13i)/(2-3i) in the form A + Bi

    Text Solution

    |

  5. If z= x +yi and (|z-1-i|+4)/(3|z-1-i|-2)=1, show that x^(2) + y^(2) -2...

    Text Solution

    |

  6. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  7. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  8. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  9. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  10. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  11. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  12. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  13. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  14. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  15. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  16. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  17. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  18. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  19. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  20. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  21. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |