Home
Class 11
MATHS
If z(1)=2 + 7i and z(2)=1- 5i, then veri...

If `z_(1)=2 + 7i and z_(2)=1- 5i`, then verify that
`|(z_(1))/(z_(2))|= (|z_(1)|)/(|z_(2)|)`

Text Solution

AI Generated Solution

The correct Answer is:
To verify that \(\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}\) for the complex numbers \(z_1 = 2 + 7i\) and \(z_2 = 1 - 5i\), we will follow these steps: ### Step 1: Find \(z_1\) and \(z_2\) Given: - \(z_1 = 2 + 7i\) - \(z_2 = 1 - 5i\) ### Step 2: Calculate \(\frac{z_1}{z_2}\) To find \(\frac{z_1}{z_2}\), we will multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{z_1}{z_2} = \frac{2 + 7i}{1 - 5i} \cdot \frac{1 + 5i}{1 + 5i} \] Calculating the numerator: \[ (2 + 7i)(1 + 5i) = 2 \cdot 1 + 2 \cdot 5i + 7i \cdot 1 + 7i \cdot 5i \] \[ = 2 + 10i + 7i + 35i^2 \] Since \(i^2 = -1\): \[ = 2 + 17i - 35 = -33 + 17i \] Calculating the denominator: \[ (1 - 5i)(1 + 5i) = 1^2 - (5i)^2 = 1 - 25(-1) = 1 + 25 = 26 \] Thus, we have: \[ \frac{z_1}{z_2} = \frac{-33 + 17i}{26} \] ### Step 3: Find the modulus \(\left|\frac{z_1}{z_2}\right|\) The modulus of a complex number \(\frac{a + bi}{c}\) is given by: \[ \left|\frac{a + bi}{c}\right| = \frac{\sqrt{a^2 + b^2}}{|c|} \] Here, \(a = -33\), \(b = 17\), and \(c = 26\). Calculating the modulus: \[ \left|\frac{z_1}{z_2}\right| = \frac{\sqrt{(-33)^2 + (17)^2}}{26} \] \[ = \frac{\sqrt{1089 + 289}}{26} \] \[ = \frac{\sqrt{1378}}{26} \] ### Step 4: Calculate \(|z_1|\) and \(|z_2|\) Now, we will find the moduli of \(z_1\) and \(z_2\): \[ |z_1| = \sqrt{2^2 + 7^2} = \sqrt{4 + 49} = \sqrt{53} \] \[ |z_2| = \sqrt{1^2 + (-5)^2} = \sqrt{1 + 25} = \sqrt{26} \] ### Step 5: Calculate \(\frac{|z_1|}{|z_2|}\) Now we can find \(\frac{|z_1|}{|z_2|}\): \[ \frac{|z_1|}{|z_2|} = \frac{\sqrt{53}}{\sqrt{26}} = \frac{\sqrt{53}}{\sqrt{26}} = \sqrt{\frac{53}{26}} \] ### Step 6: Compare the two results We have: \[ \left|\frac{z_1}{z_2}\right| = \frac{\sqrt{1378}}{26} \] and \[ \frac{|z_1|}{|z_2|} = \sqrt{\frac{53}{26}} \] Since both expressions simplify to the same value, we have verified that: \[ \left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

If z_(1)=2 + 7i and z_(2)=1- 5i , then verify that |z_(1)z_(2)|= |z_(1)||z_(2)|

If z_(1)=2 + 7i and z_(2)=1- 5i , then verify that |z_(1)-z_(2)| gt |z_(1)|-|z_(2)|

If z_(1)=2 + 7i and z_(2)=1- 5i , then verify that |z_(1) + z_(2)| le |z_(1)| + |z_(2)|

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |(z_(1))/(z_(2))|= (|z_(1)|)/(|z_(2)|)

If z_(1)= 3 + 5i and z_(2)= 2- 3i , then verify that bar(((z_(1))/(z_(2))))= (bar(z)_(1))/(bar(z)_(2))

If z_(1) = 5 + 12i and |z_(2)| = 4 , then

If z_(1) = 3+ 2i and z_(2) = 2-i then verify that (i) bar(z_(1) + z_(2)) = barz_(1) + barz_(2)

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |z_(1)z_(2) |= |z_(1)| |z_(2)|

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |-z_(1)| = |z_(1)|

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |z_(2)-z_(1)| gt ||z_(2)|- |z_(1)||

ICSE-COMPLEX NUMBERS-Chapter Test
  1. If z(1)=2 + 7i and z(2)=1- 5i, then verify that |(z(1))/(z(2))|= (|...

    Text Solution

    |

  2. Find the square root of 5-12i

    Text Solution

    |

  3. Find the locus of a complex number z=x +yi, satisfying the relation |z...

    Text Solution

    |

  4. Express (13i)/(2-3i) in the form A + Bi

    Text Solution

    |

  5. If z= x +yi and (|z-1-i|+4)/(3|z-1-i|-2)=1, show that x^(2) + y^(2) -2...

    Text Solution

    |

  6. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  7. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  8. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  9. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  10. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  11. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  12. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  13. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  14. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  15. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  16. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  17. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  18. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  19. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  20. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  21. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |