Home
Class 11
MATHS
Find the modulus of ((3+2i) (1+i) (2+3i)...

Find the modulus of `((3+2i) (1+i) (2+3i))/((3+4i) (4+5i))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus of the expression \(\frac{(3+2i)(1+i)(2+3i)}{(3+4i)(4+5i)}\), we will follow these steps: ### Step 1: Calculate the product in the numerator Let \( z_1 = 3 + 2i \), \( z_2 = 1 + i \), and \( z_3 = 2 + 3i \). We first calculate the product \( z_1 z_2 z_3 \). 1. Calculate \( z_1 z_2 \): \[ z_1 z_2 = (3 + 2i)(1 + i) = 3 \cdot 1 + 3 \cdot i + 2i \cdot 1 + 2i \cdot i = 3 + 3i + 2i + 2i^2 \] Since \( i^2 = -1 \): \[ = 3 + 5i - 2 = 1 + 5i \] 2. Now calculate \( (1 + 5i)(2 + 3i) \): \[ (1 + 5i)(2 + 3i) = 1 \cdot 2 + 1 \cdot 3i + 5i \cdot 2 + 5i \cdot 3i = 2 + 3i + 10i + 15i^2 \] Again, using \( i^2 = -1 \): \[ = 2 + 13i - 15 = -13 + 13i \] So, the numerator is \( -13 + 13i \). ### Step 2: Calculate the product in the denominator Let \( z_4 = 3 + 4i \) and \( z_5 = 4 + 5i \). 1. Calculate \( z_4 z_5 \): \[ z_4 z_5 = (3 + 4i)(4 + 5i) = 3 \cdot 4 + 3 \cdot 5i + 4i \cdot 4 + 4i \cdot 5i = 12 + 15i + 16i + 20i^2 \] Using \( i^2 = -1 \): \[ = 12 + 31i - 20 = -8 + 31i \] So, the denominator is \( -8 + 31i \). ### Step 3: Find the modulus of the numerator and denominator The modulus of a complex number \( a + bi \) is given by \( \sqrt{a^2 + b^2} \). 1. Modulus of the numerator \( -13 + 13i \): \[ |z_{numerator}| = \sqrt{(-13)^2 + (13)^2} = \sqrt{169 + 169} = \sqrt{338} \] 2. Modulus of the denominator \( -8 + 31i \): \[ |z_{denominator}| = \sqrt{(-8)^2 + (31)^2} = \sqrt{64 + 961} = \sqrt{1025} \] ### Step 4: Find the modulus of the entire expression The modulus of the fraction is given by: \[ \left| \frac{z_{numerator}}{z_{denominator}} \right| = \frac{|z_{numerator}|}{|z_{denominator}|} = \frac{\sqrt{338}}{\sqrt{1025}} = \sqrt{\frac{338}{1025}} \] ### Step 5: Simplify the expression To simplify \( \frac{338}{1025} \): - Factor \( 338 = 2 \times 13^2 \) - Factor \( 1025 = 5^2 \times 41 \) Thus, we can write: \[ \sqrt{\frac{338}{1025}} = \frac{13\sqrt{2}}{5\sqrt{41}} \] ### Final Answer The modulus of the expression is: \[ \frac{13\sqrt{2}}{5\sqrt{41}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Find the modulus of (2 -3i)/( 4+i)

Find the modulus of ((3+2i)^(2))/(4-3i)

The modulus of (1+i)(3+4i)=

Find modulus of (i) (2+4i)/(2-6i)

The modulus of ((2+3i)^(2))/(2+i) is

The modulus of ((1+2i)(3-4i))/((4+3i)(2-3i)) is

The modulus of i^(25)+(i+2)^(3) is

Find the modulus and amplitude of (2 + 3i)/(3+2i)

Find the conjugate of ((3-2i)(2+3i))/((1+2i)(2-i)) .

Find the conjugate of ((3-2i)(2+3i))/((1+2i)(2-i)) .

ICSE-COMPLEX NUMBERS-Chapter Test
  1. Find the modulus of ((3+2i) (1+i) (2+3i))/((3+4i) (4+5i))

    Text Solution

    |

  2. Find the square root of 5-12i

    Text Solution

    |

  3. Find the locus of a complex number z=x +yi, satisfying the relation |z...

    Text Solution

    |

  4. Express (13i)/(2-3i) in the form A + Bi

    Text Solution

    |

  5. If z= x +yi and (|z-1-i|+4)/(3|z-1-i|-2)=1, show that x^(2) + y^(2) -2...

    Text Solution

    |

  6. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  7. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  8. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  9. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  10. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  11. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  12. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  13. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  14. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  15. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  16. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  17. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  18. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  19. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  20. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  21. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |