Home
Class 11
MATHS
Given that (1 + i)/(1 + 2^(2)i) xx (1 + ...

Given that `(1 + i)/(1 + 2^(2)i) xx (1 + 3^(2) i)/(1 + 4^(2) i) xx….xx (1 + (2n-1)^(2)i)/(1+(2n)^(2)i)= (a + bi)/(c+di)`, show that `(2)/(17) xx (82)/(257) xx ….xx ((2n-1)^(4) + 1)/((2n)^(4) + 1) = (a^(2) + b^(2))/(c^(2) + d^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \[ \frac{2}{17} \times \frac{82}{257} \times \ldots \times \frac{(2n-1)^4 + 1}{(2n)^4 + 1} = \frac{a^2 + b^2}{c^2 + d^2} \] where \[ \frac{(1 + i)}{(1 + 2^2 i)} \times \frac{(1 + 3^2 i)}{(1 + 4^2 i)} \times \ldots \times \frac{(1 + (2n-1)^2 i)}{(1 + (2n)^2 i)} = \frac{a + bi}{c + di} \] ### Step-by-Step Solution: 1. **Express the given product in terms of magnitudes**: We start with the expression: \[ \frac{(1 + i)}{(1 + 2^2 i)} \times \frac{(1 + 3^2 i)}{(1 + 4^2 i)} \times \ldots \times \frac{(1 + (2n-1)^2 i)}{(1 + (2n)^2 i)} \] Taking the magnitudes of both sides, we have: \[ \left| \frac{(1 + i)}{(1 + 2^2 i)} \times \frac{(1 + 3^2 i)}{(1 + 4^2 i)} \times \ldots \times \frac{(1 + (2n-1)^2 i)}{(1 + (2n)^2 i)} \right| = \frac{|a + bi|}{|c + di|} \] 2. **Calculate the magnitudes**: The magnitude of a complex number \( z = x + yi \) is given by \( |z| = \sqrt{x^2 + y^2} \). - For \( 1 + i \): \[ |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2} \] - For \( 1 + 2^2 i = 1 + 4i \): \[ |1 + 4i| = \sqrt{1^2 + 4^2} = \sqrt{17} \] - For \( 1 + 3^2 i = 1 + 9i \): \[ |1 + 9i| = \sqrt{1^2 + 9^2} = \sqrt{82} \] - For \( 1 + 4^2 i = 1 + 16i \): \[ |1 + 16i| = \sqrt{1^2 + 16^2} = \sqrt{257} \] Continuing this pattern, we find the magnitudes for all terms up to \( n \). 3. **Combine the magnitudes**: Thus, we can express the product of the magnitudes as: \[ \frac{|1 + i|}{|1 + 4i|} \times \frac{|1 + 9i|}{|1 + 16i|} \times \ldots = \frac{\sqrt{2}}{\sqrt{17}} \times \frac{\sqrt{82}}{\sqrt{257}} \times \ldots \] This leads to: \[ \frac{\sqrt{2} \times \sqrt{82} \times \ldots}{\sqrt{17} \times \sqrt{257} \times \ldots} \] 4. **Square both sides**: Squaring both sides to eliminate the square roots gives: \[ \frac{2 \times 82 \times \ldots}{17 \times 257 \times \ldots} = \frac{a^2 + b^2}{c^2 + d^2} \] 5. **Final expression**: Therefore, we conclude that: \[ \frac{2}{17} \times \frac{82}{257} \times \ldots \times \frac{(2n-1)^4 + 1}{(2n)^4 + 1} = \frac{a^2 + b^2}{c^2 + d^2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Show that (1+ 2i)/(3+4i) xx (1-2i)/(3-4i) is real

Show that (1 xx 2^(2) + 2 xx 3^(2) + . . . + n xx ( n + 1) ^(2))/( 1 ^(2) xx 2 + 2^(2) xx 3 + . . . + n^(2) xx ( n + 1) ) = ( 3 n + 5)/( 3 n + 1 )

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2m+1) 2^(n) .

Find the sum 1 xx 2 xx .^(n)C_(1) + 2 xx 3 xx .^(n)C_(2) + "….." + n xx (n+1) xx .^(n)C_(n) .

Evaluate : a. (-1)^(11) b. (-3)^(2)xx(5)^(3) c. 6^(2)xx3^(3) d. (-2)^(3)xx(-5)^(2) e. (-1)^(7)xx2 f. (-1)^(4)xx(-1)^(5) g. 4^(3)xx3^(4) h. (-2)^(5)xx5^(3) i. (-4)^(3)xx(-6)^(3) j. (-1)^(33)xx(-3)^(1) k. ((-1)/(6))^(2) l. ((2)/(11))^(3)

If (1+i)(1+2i)(1+3i)(1+n i)=(x+i y) , Show that 2.5.10 ..... (1+n^2)=x^2+y^2dot

Find the sum .^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n) .

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

If (1+i)(1+2i)(1+3i)1+m)=(x+i y) , then show that 2xx5xx10xxxx(1+n^2)=x^2+y^2dot

Evaluate (i) (8^-1 xx 5^3)/(2^-4) (ii) (5^-1 xx 2^-1) xx 6^-1

ICSE-COMPLEX NUMBERS-Chapter Test
  1. Given that (1 + i)/(1 + 2^(2)i) xx (1 + 3^(2) i)/(1 + 4^(2) i) xx….xx ...

    Text Solution

    |

  2. Find the square root of 5-12i

    Text Solution

    |

  3. Find the locus of a complex number z=x +yi, satisfying the relation |z...

    Text Solution

    |

  4. Express (13i)/(2-3i) in the form A + Bi

    Text Solution

    |

  5. If z= x +yi and (|z-1-i|+4)/(3|z-1-i|-2)=1, show that x^(2) + y^(2) -2...

    Text Solution

    |

  6. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  7. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  8. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  9. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  10. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  11. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  12. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  13. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  14. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  15. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  16. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  17. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  18. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  19. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  20. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  21. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |