Home
Class 11
MATHS
Find the greatest value of the moduli of...

Find the greatest value of the moduli of complex numbers z satisfying the equation `|z-(4)/(z)|=2`. What is the minimum value ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the greatest and minimum values of the moduli of complex numbers \( z \) satisfying the equation \( |z - \frac{4}{z}| = 2 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ |z - \frac{4}{z}| = 2 \] ### Step 2: Use the property of moduli Using the triangle inequality, we can express the left-hand side: \[ |z - \frac{4}{z}| = |z| - |\frac{4}{z}| \] Let \( |z| = t \). Then, we have: \[ |z| = t \quad \text{and} \quad |\frac{4}{z}| = \frac{4}{|z|} = \frac{4}{t} \] Thus, the equation becomes: \[ |z| - |\frac{4}{z}| = t - \frac{4}{t} \] So we rewrite our equation as: \[ |t - \frac{4}{t}| = 2 \] ### Step 3: Set up the inequalities This gives us two cases to consider: 1. \( t - \frac{4}{t} = 2 \) 2. \( t - \frac{4}{t} = -2 \) ### Step 4: Solve the first case For the first case: \[ t - \frac{4}{t} = 2 \] Multiplying through by \( t \) (assuming \( t \neq 0 \)): \[ t^2 - 4 = 2t \] Rearranging gives: \[ t^2 - 2t - 4 = 0 \] Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ t = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-4)}}{2 \cdot 1} = \frac{2 \pm \sqrt{4 + 16}}{2} = \frac{2 \pm \sqrt{20}}{2} = \frac{2 \pm 2\sqrt{5}}{2} = 1 \pm \sqrt{5} \] ### Step 5: Solve the second case For the second case: \[ t - \frac{4}{t} = -2 \] Multiplying through by \( t \): \[ t^2 + 2t - 4 = 0 \] Using the quadratic formula again: \[ t = \frac{-2 \pm \sqrt{(2)^2 - 4 \cdot 1 \cdot (-4)}}{2 \cdot 1} = \frac{-2 \pm \sqrt{4 + 16}}{2} = \frac{-2 \pm \sqrt{20}}{2} = \frac{-2 \pm 2\sqrt{5}}{2} = -1 \pm \sqrt{5} \] ### Step 6: Collect all possible values From the two cases, we have the following possible values for \( t \): 1. From the first case: \( t = 1 + \sqrt{5} \) and \( t = 1 - \sqrt{5} \) 2. From the second case: \( t = -1 + \sqrt{5} \) and \( t = -1 - \sqrt{5} \) ### Step 7: Determine valid values Since \( t \) represents the modulus \( |z| \), it must be non-negative: - \( 1 + \sqrt{5} \) is valid. - \( 1 - \sqrt{5} \) is negative and thus invalid. - \( -1 + \sqrt{5} \) is valid since \( \sqrt{5} \approx 2.236 \) gives \( -1 + 2.236 \approx 1.236 \). - \( -1 - \sqrt{5} \) is negative and thus invalid. ### Step 8: Conclusion The valid values for \( |z| \) are: - Maximum: \( 1 + \sqrt{5} \) - Minimum: \( -1 + \sqrt{5} \) ### Final Answer: - Greatest value of \( |z| \) is \( 1 + \sqrt{5} \). - Minimum value of \( |z| \) is \( -1 + \sqrt{5} \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Find a complex number z satisfying the equation z+sqrt(2)|z+1|+i=0.

Find a complex number z satisfying the equation z+sqrt(2)|z+1|+i=0.

Find a complex number z satisfying the equation z+sqrt(2)|z+1|+i=0.

For the complex number z satisfying the condition |z+(2)/(z)|=2 , the maximum value of |z| is

IF agt=1 , find all complex numbers z satisfying the equation z+a|z+1|+i=0

Find the non-zero complex number z satisfying z =i z^2dot

Number of imaginary complex numbers satisfying the equation, z^2=bar(z)2^(1-|z|) is

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|dot

For all complex numbers z_1,z_2 satisfying |z_1|=12 and |z_2-3-4i|=5 , find the minimum value of |z_1-z_2|

ICSE-COMPLEX NUMBERS-Chapter Test
  1. Find the greatest value of the moduli of complex numbers z satisfying ...

    Text Solution

    |

  2. Find the square root of 5-12i

    Text Solution

    |

  3. Find the locus of a complex number z=x +yi, satisfying the relation |z...

    Text Solution

    |

  4. Express (13i)/(2-3i) in the form A + Bi

    Text Solution

    |

  5. If z= x +yi and (|z-1-i|+4)/(3|z-1-i|-2)=1, show that x^(2) + y^(2) -2...

    Text Solution

    |

  6. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  7. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  8. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  9. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  10. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  11. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  12. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  13. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  14. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  15. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  16. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  17. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  18. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  19. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  20. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  21. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |