Home
Class 11
MATHS
If z=x + yi and omega= (1-zi)/(z-i) show...

If `z=x + yi and omega= (1-zi)/(z-i)` show that `|omega|=1 rArr z` is purely real

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \( |\omega| = 1 \), then \( z \) is purely real, where \( z = x + yi \) and \( \omega = \frac{1 - zi}{z - i} \). ### Step-by-Step Solution: 1. **Start with the definition of \( \omega \)**: \[ \omega = \frac{1 - zi}{z - i} \] 2. **Substitute \( z = x + yi \)** into \( \omega \): \[ \omega = \frac{1 - (x + yi)i}{(x + yi) - i} \] Simplifying the numerator: \[ 1 - (x + yi)i = 1 - xi - y(-1) = 1 + y - xi \] Simplifying the denominator: \[ (x + yi) - i = x + (y - 1)i \] Thus, \[ \omega = \frac{1 + y - xi}{x + (y - 1)i} \] 3. **Find the magnitude of \( \omega \)**: The magnitude \( |\omega| \) is given by: \[ |\omega| = \frac{|1 + y - xi|}{|x + (y - 1)i|} \] We need to compute the magnitudes of the numerator and denominator. 4. **Calculate the magnitude of the numerator**: \[ |1 + y - xi| = \sqrt{(1 + y)^2 + (-x)^2} = \sqrt{(1 + y)^2 + x^2} \] 5. **Calculate the magnitude of the denominator**: \[ |x + (y - 1)i| = \sqrt{x^2 + (y - 1)^2} \] 6. **Set the magnitudes equal to 1**: Since \( |\omega| = 1 \), we have: \[ \frac{\sqrt{(1 + y)^2 + x^2}}{\sqrt{x^2 + (y - 1)^2}} = 1 \] Squaring both sides gives: \[ (1 + y)^2 + x^2 = x^2 + (y - 1)^2 \] 7. **Simplify the equation**: Cancel \( x^2 \) from both sides: \[ (1 + y)^2 = (y - 1)^2 \] Expanding both sides: \[ 1 + 2y + y^2 = y^2 - 2y + 1 \] Cancel \( y^2 \) and \( 1 \): \[ 2y = -2y \] Thus, \[ 4y = 0 \implies y = 0 \] 8. **Conclusion**: Since \( y = 0 \), we have \( z = x + 0i = x \), which means \( z \) is purely real.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

If z=x+i y and w=(1-i z)/(z-i) , show that |w|=1 z is purely real.

If z= x + yi and omega = ((1- zi))/(z-i) , then |omega|=1 implies that in the complex plane

If z=x+i y and w=(1-i z)//(z-i) and |w| = 1 , then show that z is purely real.

If |z|=k and omega=(z-k)/(z+k) , then Re (omega) =

If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1 , find the locus of z in the complex plane

Let z be a complex number such that |(z-5i)/(z+5i)|=1 , then show that z is purely real

Find the locus of z if omega= (z)/(z- (1)/(3)i), |omega| =1

Prove that z=i^i, where i=sqrt-1, is purely real.

If |z| <= 1 and |omega| <= 1, show that |z-omega|^2 <= (|z|-|omega|)^2+(arg z-arg omega)^2

If |z|=1 and let omega=((1-z)^2)/(1-z^2) , then prove that the locus of omega is equivalent to |z-2|=|z+2|

ICSE-COMPLEX NUMBERS-Chapter Test
  1. If z=x + yi and omega= (1-zi)/(z-i) show that |omega|=1 rArr z is pure...

    Text Solution

    |

  2. Find the square root of 5-12i

    Text Solution

    |

  3. Find the locus of a complex number z=x +yi, satisfying the relation |z...

    Text Solution

    |

  4. Express (13i)/(2-3i) in the form A + Bi

    Text Solution

    |

  5. If z= x +yi and (|z-1-i|+4)/(3|z-1-i|-2)=1, show that x^(2) + y^(2) -2...

    Text Solution

    |

  6. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  7. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  8. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  9. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  10. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  11. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  12. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  13. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  14. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  15. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  16. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  17. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  18. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  19. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  20. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  21. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |