Home
Class 11
MATHS
Find the modulus and amplitude of (2 + 3...

Find the modulus and amplitude of `(2 + 3i)/(3+2i)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus and amplitude of the complex number \(\frac{2 + 3i}{3 + 2i}\), we will follow these steps: ### Step 1: Find the Modulus The modulus of a complex number \( z = x + yi \) is given by: \[ |z| = \sqrt{x^2 + y^2} \] For the complex numbers \( z_1 = 2 + 3i \) and \( z_2 = 3 + 2i \), we can find their moduli separately. **Modulus of \( z_1 \):** \[ |z_1| = |2 + 3i| = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \] **Modulus of \( z_2 \):** \[ |z_2| = |3 + 2i| = \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13} \] Now, using the property of moduli: \[ \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} = \frac{\sqrt{13}}{\sqrt{13}} = 1 \] ### Step 2: Find the Amplitude The amplitude (or argument) of a complex number \( z = x + yi \) is given by: \[ \text{arg}(z) = \tan^{-1}\left(\frac{y}{x}\right) \] **Amplitude of \( z_1 \):** \[ \text{arg}(z_1) = \tan^{-1}\left(\frac{3}{2}\right) \] **Amplitude of \( z_2 \):** \[ \text{arg}(z_2) = \tan^{-1}\left(\frac{2}{3}\right) \] Using the property of amplitudes: \[ \text{arg}\left(\frac{z_1}{z_2}\right) = \text{arg}(z_1) - \text{arg}(z_2) \] Thus, \[ \text{arg}\left(\frac{2 + 3i}{3 + 2i}\right) = \tan^{-1}\left(\frac{3}{2}\right) - \tan^{-1}\left(\frac{2}{3}\right) \] Using the formula for the difference of two arctangents: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x - y}{1 + xy}\right) \] where \( x = \frac{3}{2} \) and \( y = \frac{2}{3} \): \[ \text{arg}\left(\frac{2 + 3i}{3 + 2i}\right) = \tan^{-1}\left(\frac{\frac{3}{2} - \frac{2}{3}}{1 + \left(\frac{3}{2}\right)\left(\frac{2}{3}\right)}\right) \] Calculating the numerator: \[ \frac{3}{2} - \frac{2}{3} = \frac{9 - 4}{6} = \frac{5}{6} \] Calculating the denominator: \[ 1 + \left(\frac{3}{2}\right)\left(\frac{2}{3}\right) = 1 + 1 = 2 \] Thus, \[ \text{arg}\left(\frac{2 + 3i}{3 + 2i}\right) = \tan^{-1}\left(\frac{\frac{5}{6}}{2}\right) = \tan^{-1}\left(\frac{5}{12}\right) \] ### Final Result The modulus and amplitude of \(\frac{2 + 3i}{3 + 2i}\) are: - Modulus: \( 1 \) - Amplitude: \( \tan^{-1}\left(\frac{5}{12}\right) \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Find the modulus and amplitude of -4i

Find the modulus and amplitude of ( 2+ i)/( 4i +(1+i) ^(2))

Find the modulus and amplitude of (2+i)/(4i+(1+i)^(2)) .

Find the modulus and amplitude of (-1)/(2)+ (sqrt3)/(2)i

Find the modulus and argument of -4i.

Find the modulus and amplitude of the following complex numbers and hence express them into polar form (5-i)/(2-3i)

Find the modulus and amplitude of the following complex numbers and hence express them into polar form -2+2 sqrt3i

Find the modulus and amplitude of the following complex numbers and hence express them into polar form ((1+i)(2+i))/((3+i))

Find the modulus and amplitude of the following complex numbers and hence express them into polar form (3+i) (4+i)

Find the modulus and amplitude of the following complex numbers and hence express them into polar form ((3+4i) (4+ 5i))/((4+3i) (6+7i))

ICSE-COMPLEX NUMBERS-Chapter Test
  1. Find the modulus and amplitude of (2 + 3i)/(3+2i)

    Text Solution

    |

  2. Find the square root of 5-12i

    Text Solution

    |

  3. Find the locus of a complex number z=x +yi, satisfying the relation |z...

    Text Solution

    |

  4. Express (13i)/(2-3i) in the form A + Bi

    Text Solution

    |

  5. If z= x +yi and (|z-1-i|+4)/(3|z-1-i|-2)=1, show that x^(2) + y^(2) -2...

    Text Solution

    |

  6. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  7. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  8. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  9. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  10. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  11. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  12. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  13. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  14. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  15. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  16. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  17. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  18. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  19. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  20. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  21. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |