Home
Class 11
MATHS
Represent the complex numbers (1+7i)...

Represent the complex numbers
`(1+7i)/((2-i)^(2))` in polar form

Text Solution

AI Generated Solution

The correct Answer is:
To represent the complex number \(\frac{1 + 7i}{(2 - i)^2}\) in polar form, we will follow these steps: ### Step 1: Calculate \((2 - i)^2\) We start by squaring the denominator: \[ (2 - i)^2 = 2^2 - 2 \cdot 2 \cdot i + i^2 = 4 - 4i + (-1) = 3 - 4i \] ### Step 2: Rewrite the complex number Now we can rewrite the complex number: \[ z = \frac{1 + 7i}{3 - 4i} \] ### Step 3: Rationalize the denominator To simplify the expression, we multiply the numerator and denominator by the conjugate of the denominator: \[ z = \frac{(1 + 7i)(3 + 4i)}{(3 - 4i)(3 + 4i)} \] Calculating the denominator: \[ (3 - 4i)(3 + 4i) = 3^2 - (4i)^2 = 9 - 16(-1) = 9 + 16 = 25 \] Now for the numerator: \[ (1 + 7i)(3 + 4i) = 1 \cdot 3 + 1 \cdot 4i + 7i \cdot 3 + 7i \cdot 4i = 3 + 4i + 21i + 28(-1) = 3 + 25i - 28 = -25 + 25i \] ### Step 4: Combine the results Putting it all together, we have: \[ z = \frac{-25 + 25i}{25} = -1 + i \] ### Step 5: Convert to polar form To convert \(-1 + i\) into polar form, we need to find the modulus \(r\) and the argument \(\theta\): 1. **Modulus**: \[ r = |z| = \sqrt{(-1)^2 + (1)^2} = \sqrt{1 + 1} = \sqrt{2} \] 2. **Argument**: \[ \theta = \tan^{-1}\left(\frac{1}{-1}\right) = \tan^{-1}(-1) \] Since the complex number \(-1 + i\) lies in the second quadrant, we adjust the angle: \[ \theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4} \] ### Final Result Thus, the polar form of the complex number is: \[ z = \sqrt{2} \left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Represent the complex numbers 2-2i

Convert the complex number (1+i)/(1-i) in the polar form

Represent the complex number z = 1 +isqrt(3) in the polar form.

Express in the complex number if 3(7+7i)+(i(7+7i)

Represent the complex numbers z= 1 + sqrt3i into polar form

Show that the points representing the complex numbers (3+2i),(2-i) and -7i are collinear

Put the complex number (1+7i)/((2-i)^2) in the form r(costheta+i\ sintheta) , where r is a positive real number and -pilttheta le pi .

Convert the complex number z=(i-1)/(cospi/3+isinpi/3) in the polar form.

Convert the complex number z=(i-1)/(cospi/3+isinpi/3) in the polar form.

Convert the complex number z=(i-1)/(cospi/3+isinpi/3) in the polar form.

ICSE-COMPLEX NUMBERS-Chapter Test
  1. Represent the complex numbers (1+7i)/((2-i)^(2)) in polar form

    Text Solution

    |

  2. Find the square root of 5-12i

    Text Solution

    |

  3. Find the locus of a complex number z=x +yi, satisfying the relation |z...

    Text Solution

    |

  4. Express (13i)/(2-3i) in the form A + Bi

    Text Solution

    |

  5. If z= x +yi and (|z-1-i|+4)/(3|z-1-i|-2)=1, show that x^(2) + y^(2) -2...

    Text Solution

    |

  6. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  7. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  8. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  9. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  10. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  11. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  12. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  13. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  14. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  15. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  16. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  17. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  18. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  19. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  20. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  21. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |