Home
Class 11
MATHS
Change the complex number 4(cos 300^(@) ...

Change the complex number `4(cos 300^(@) + i sin 300^(@))` to cartesian form

Text Solution

AI Generated Solution

The correct Answer is:
To convert the complex number \( 4(\cos 300^\circ + i \sin 300^\circ) \) to Cartesian form, we can follow these steps: ### Step 1: Rewrite the angle We can express \( 300^\circ \) in terms of \( 360^\circ \): \[ 300^\circ = 360^\circ - 60^\circ \] This helps us to use the properties of trigonometric functions. ### Step 2: Apply the cosine and sine properties Using the properties of cosine and sine: - \( \cos(360^\circ - \theta) = \cos(\theta) \) - \( \sin(360^\circ - \theta) = -\sin(\theta) \) We can rewrite the complex number: \[ \cos 300^\circ = \cos(360^\circ - 60^\circ) = \cos 60^\circ \] \[ \sin 300^\circ = \sin(360^\circ - 60^\circ) = -\sin 60^\circ \] ### Step 3: Substitute the values Now substituting these values into our expression: \[ 4(\cos 300^\circ + i \sin 300^\circ) = 4\left(\cos 60^\circ - i \sin 60^\circ\right) \] ### Step 4: Calculate cosine and sine values We know: \[ \cos 60^\circ = \frac{1}{2} \quad \text{and} \quad \sin 60^\circ = \frac{\sqrt{3}}{2} \] Substituting these values gives: \[ 4\left(\frac{1}{2} - i \frac{\sqrt{3}}{2}\right) \] ### Step 5: Simplify the expression Distributing the 4: \[ = 4 \cdot \frac{1}{2} - 4 \cdot i \cdot \frac{\sqrt{3}}{2} \] \[ = 2 - 2i\sqrt{3} \] ### Final Answer Thus, the Cartesian form of the complex number is: \[ 2 - 2\sqrt{3}i \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

The argument of the complex number (1 +i)^(4) is

Covert the complex number z = 1 + cos (8pi)/(5) + i. sin (8pi)/(5) in polar form. Find its modulus and argument.

Change the following complex numbers to Cartesiasn form: 4(cos300^0+isin300^0)

Change the following complex numbers to Cartesiasn form: 5(cos270^0 + i sin 270^0)

Convert of the complex number in the polar form: i

The polar form of the complex number (i^(25))^(3) is

Find the greater number is 100^(100) and (300)!.

Change the following complex numbers to Cartesiasn form: 2(cos0^0+isin0^0)

Given that sin30^(@)=1//2 and cos 30^(@)=sqrt3//2 . Determine the values of sin 60^(@), sin 120^(@), sin 240^(@), sin 300^(@) , and sin (-30^(@)) .

Convert of the complex number in the polar form: 1-i

ICSE-COMPLEX NUMBERS-Chapter Test
  1. Change the complex number 4(cos 300^(@) + i sin 300^(@)) to cartesian ...

    Text Solution

    |

  2. Find the square root of 5-12i

    Text Solution

    |

  3. Find the locus of a complex number z=x +yi, satisfying the relation |z...

    Text Solution

    |

  4. Express (13i)/(2-3i) in the form A + Bi

    Text Solution

    |

  5. If z= x +yi and (|z-1-i|+4)/(3|z-1-i|-2)=1, show that x^(2) + y^(2) -2...

    Text Solution

    |

  6. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  7. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  8. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  9. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  10. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  11. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  12. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  13. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  14. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  15. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  16. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  17. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  18. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  19. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  20. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  21. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |