Home
Class 11
MATHS
Find the radius and centre of the circle...

Find the radius and centre of the circle
`z bar(z)- (2 + 3i) z-(2-3i) bar(z)+ 9=0` where z is a complex variable

Text Solution

AI Generated Solution

The correct Answer is:
To find the radius and center of the circle given by the equation: \[ \overline{z} z - (2 + 3i) z - (2 - 3i) \overline{z} + 9 = 0 \] where \( z \) is a complex variable, we will follow these steps: ### Step 1: Substitute \( z \) and \( \overline{z} \) Let \( z = x + yi \) and \( \overline{z} = x - yi \). Substitute these into the equation: \[ (x - yi)(x + yi) - (2 + 3i)(x + yi) - (2 - 3i)(x - yi) + 9 = 0 \] ### Step 2: Simplify \( z \overline{z} \) Using the identity \( z \overline{z} = |z|^2 = x^2 + y^2 \): \[ x^2 + y^2 - (2 + 3i)(x + yi) - (2 - 3i)(x - yi) + 9 = 0 \] ### Step 3: Expand the terms Now, expand the terms involving \( z \) and \( \overline{z} \): 1. \( (2 + 3i)(x + yi) = 2x + 2yi + 3xi - 3y = (2x - 3y) + (2y + 3x)i \) 2. \( (2 - 3i)(x - yi) = 2x - 2yi - 3xi - 3y = (2x + 3y) + (-2y + 3x)i \) Now substitute these back into the equation: \[ x^2 + y^2 - [(2x - 3y) + (2y + 3x)i] - [(2x + 3y) + (-2y + 3x)i] + 9 = 0 \] ### Step 4: Combine like terms Combine the real and imaginary parts: Real part: \[ x^2 + y^2 - (2x - 3y) - (2x + 3y) + 9 = 0 \] \[ x^2 + y^2 - 4x + 6y + 9 = 0 \] Imaginary part: \[ -(2y + 3x) - (-2y + 3x) = 0 \] ### Step 5: Rearrange the equation Now, rearranging the real part gives us: \[ x^2 + y^2 - 4x + 6y + 9 = 0 \] ### Step 6: Complete the square To express this in the standard form of a circle, we complete the square for \( x \) and \( y \): 1. For \( x \): \[ x^2 - 4x = (x - 2)^2 - 4 \] 2. For \( y \): \[ y^2 + 6y = (y + 3)^2 - 9 \] Substituting these into the equation gives: \[ (x - 2)^2 - 4 + (y + 3)^2 - 9 + 9 = 0 \] \[ (x - 2)^2 + (y + 3)^2 - 4 = 0 \] \[ (x - 2)^2 + (y + 3)^2 = 4 \] ### Step 7: Identify the center and radius From the equation \( (x - 2)^2 + (y + 3)^2 = 4 \), we can identify: - The center of the circle is \( (2, -3) \). - The radius of the circle is \( \sqrt{4} = 2 \). ### Final Answer - **Center**: \( (2, -3) \) - **Radius**: \( 2 \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Find the radius and centre of the circle z bar(z) + (1-i) z + (1+ i) bar(z)- 7 = 0

If Z is a complex number the radius of z bar z - ( 2+3i)z - (2-3i)barz + 9 =0 is equal to

The radius of the circle |(z-i)/(z+i)|=3 , is

Find the center and radius of the circle 2zbarz+(3-i)z+(3+i)z-7=0," where " i=sqrt(-1).

Solve |z|+z= 2+ i , where z is a complex number

Show that |(2z + 5)(sqrt2-i)|=sqrt(3) |2z+5| , where z is a complex number.

The solution of the equation z(bar(z-3i))=2(2+3i) is/are

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

If z=x+i y , then show that z bar z +2(z+ bar z )+a=0 , where a in R , represents a circle.

Fill in the blanks. arg (z) + arg bar(z) " where " , (bar(z) ne 0) is …..

ICSE-COMPLEX NUMBERS-Chapter Test
  1. Find the radius and centre of the circle z bar(z)- (2 + 3i) z-(2-3i)...

    Text Solution

    |

  2. Find the square root of 5-12i

    Text Solution

    |

  3. Find the locus of a complex number z=x +yi, satisfying the relation |z...

    Text Solution

    |

  4. Express (13i)/(2-3i) in the form A + Bi

    Text Solution

    |

  5. If z= x +yi and (|z-1-i|+4)/(3|z-1-i|-2)=1, show that x^(2) + y^(2) -2...

    Text Solution

    |

  6. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  7. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  8. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  9. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  10. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  11. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  12. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  13. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  14. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  15. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  16. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  17. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  18. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  19. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  20. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  21. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |