Home
Class 11
MATHS
If 1, omega, omega^(2) are three cube ro...

If `1, omega, omega^(2)` are three cube roots of unity, show that `(a + omega b+ omega^(2)c) (a + omega^(2)b+ omega c)= a^(2) + b^(2) + c^(2)- ab- bc - ca`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that: \[ (a + \omega b + \omega^2 c)(a + \omega^2 b + \omega c) = a^2 + b^2 + c^2 - ab - bc - ca \] where \(1, \omega, \omega^2\) are the cube roots of unity, satisfying \( \omega^3 = 1 \) and \( 1 + \omega + \omega^2 = 0 \). ### Step 1: Expand the Left-Hand Side We start by expanding the left-hand side: \[ (a + \omega b + \omega^2 c)(a + \omega^2 b + \omega c) \] Using the distributive property (FOIL method), we get: \[ = a(a + \omega^2 b + \omega c) + \omega b(a + \omega^2 b + \omega c) + \omega^2 c(a + \omega^2 b + \omega c) \] Calculating each term: 1. \( a(a + \omega^2 b + \omega c) = a^2 + a\omega^2 b + a\omega c \) 2. \( \omega b(a + \omega^2 b + \omega c) = \omega ab + \omega^3 b^2 + \omega^2 bc = \omega ab + b^2 + \omega^2 bc \) (since \( \omega^3 = 1 \)) 3. \( \omega^2 c(a + \omega^2 b + \omega c) = \omega^2 ac + \omega^2 b^2 + \omega^3 c^2 = \omega^2 ac + \omega^2 b^2 + c^2 \) Now, combining all these terms, we have: \[ = a^2 + (a\omega^2 b + \omega ab) + (a\omega c + \omega^2 ac) + (b^2 + \omega^2 b^2) + (c^2 + \omega^2 bc) \] ### Step 2: Combine Like Terms Now we can combine the terms: \[ = a^2 + b^2 + c^2 + (a\omega^2 b + \omega ab) + (a\omega c + \omega^2 ac) + (\omega^2 bc + b^2) \] ### Step 3: Simplify Using Properties of \(\omega\) Using the properties of \(\omega\): - \( \omega + \omega^2 = -1 \) - \( \omega^2 + \omega = -1 \) We can simplify the combinations: \[ = a^2 + b^2 + c^2 + (ab(\omega + \omega^2)) + (ac(\omega + \omega^2)) + (bc(\omega + \omega^2)) \] Substituting \( \omega + \omega^2 = -1 \): \[ = a^2 + b^2 + c^2 - ab - ac - bc \] ### Conclusion Thus, we have shown that: \[ (a + \omega b + \omega^2 c)(a + \omega^2 b + \omega c) = a^2 + b^2 + c^2 - ab - ac - bc \] Hence, the statement is proved.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

If 1, omega, omega^(2) are three cube roots of unity, prove that (1- omega) (1- omega^(2))= 3

If 1, omega, omega^(2) are three cube roots of unity, prove that (1- omega- omega^(2))^(6)= 64

If 1, omega, omega^(2) are three cube roots of unity, prove that (1 + omega - omega^(2)) (1- omega + omega^(2))=4

If 1, omega, omega^(2) are three cube roots of unity, prove that (1 + omega^(2))^(4)= omega

If 1, omega, omega^(2) are three cube roots of unity, prove that omega^(28) + omega^(29) + 1= 0

If, 1, omega, omega^(2) are cube roots of unity, show that (p + qomega + r omega^(2))/(r + p omega + q omega^(2))= omega^(2)

If 1, omega, omega^(2) are three cube roots of unity, prove that (3+ 5omega + 3omega^(2))^(6) = (3 + 5omega^(2) + 3omega)^(6)= 64

If 1, omega, omega^(2) are three cube roots of unity, prove that (1+ omega- omega^(2))^(3)= (1- omega + omega^(2))^(3)= -8

If 1, omega, omega^(2) are the cube roots of unity, prove that (1 + omega)^(3)-(1 + omega^(2))^(3)=0

If 1, omega, omega^(2) are three cube roots of unity, prove that (1)/(1 + omega) + (1)/(1+ omega^(2))=1

ICSE-COMPLEX NUMBERS-Chapter Test
  1. If 1, omega, omega^(2) are three cube roots of unity, show that (a + o...

    Text Solution

    |

  2. Find the square root of 5-12i

    Text Solution

    |

  3. Find the locus of a complex number z=x +yi, satisfying the relation |z...

    Text Solution

    |

  4. Express (13i)/(2-3i) in the form A + Bi

    Text Solution

    |

  5. If z= x +yi and (|z-1-i|+4)/(3|z-1-i|-2)=1, show that x^(2) + y^(2) -2...

    Text Solution

    |

  6. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  7. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  8. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  9. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  10. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  11. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  12. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  13. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  14. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  15. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  16. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  17. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  18. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  19. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  20. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  21. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |