Home
Class 11
MATHS
If x=a + b, y= a alpha + b beta, z= a be...

If `x=a + b, y= a alpha + b beta, z= a beta + b alpha`, where `alpha and beta` are complex cube roots of unity, then show that `xyz = a^(3) + b^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \( xyz = a^3 + b^3 \) given the definitions of \( x, y, z \) in terms of \( a, b \) and the complex cube roots of unity \( \alpha \) and \( \beta \). ### Step-by-step Solution: 1. **Define the Variables**: We are given: \[ x = a + b, \quad y = a\alpha + b\beta, \quad z = a\beta + b\alpha \] where \( \alpha \) and \( \beta \) are the complex cube roots of unity. 2. **Identify the Roots of Unity**: The complex cube roots of unity are: \[ \alpha = \omega = e^{2\pi i / 3}, \quad \beta = \omega^2 = e^{-2\pi i / 3} \] with the property that \( 1 + \omega + \omega^2 = 0 \) and \( \omega^3 = 1 \). 3. **Calculate \( y \) and \( z \)**: Substitute \( \alpha \) and \( \beta \) into \( y \) and \( z \): \[ y = a\omega + b\omega^2, \quad z = a\omega^2 + b\omega \] 4. **Calculate the Product \( xyz \)**: Now compute \( xyz \): \[ xyz = (a + b)(a\omega + b\omega^2)(a\omega^2 + b\omega) \] 5. **Expand the Product**: First, expand \( (a\omega + b\omega^2)(a\omega^2 + b\omega) \): \[ (a\omega + b\omega^2)(a\omega^2 + b\omega) = a^2\omega\omega^2 + ab\omega + ab\omega^2 + b^2\omega^2\omega \] Since \( \omega\omega^2 = \omega^3 = 1 \): \[ = a^2 + ab(\omega + \omega^2) + b^2 \] Using \( \omega + \omega^2 = -1 \): \[ = a^2 - ab + b^2 \] 6. **Combine with \( x \)**: Now, substitute back into \( xyz \): \[ xyz = (a + b)(a^2 - ab + b^2) \] Expanding this gives: \[ = a(a^2 - ab + b^2) + b(a^2 - ab + b^2) \] \[ = a^3 - a^2b + ab^2 + b^3 - ab^2 + a^2b \] Notice that the \( -a^2b \) and \( ab^2 \) terms cancel out: \[ = a^3 + b^3 \] 7. **Conclusion**: Thus, we have shown that: \[ xyz = a^3 + b^3 \] Hence proved.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

If x = a + b , y = a alpha + b beta , z = a beta + b alpha where alpha and beta are complex cube roots of unity , show that x^(3) +y^(3) + z^(3) = 3 (a^(3)+ b^(3))

If x=a+b,y=a alpha+b beta and z=abeta+ b alpha , where alpha and beta are the imaginary cube roots ofunity, then xyz=

If alpha and beta are the complex cube roots of unity, show that alpha^4+beta^4 + alpha^-1 beta^-1 = 0.

If alpha and beta are the complex cube roots of unity, then prove that (1 + alpha) (1 + beta) (1 + alpha)^(2) (1+ beta)^(2)=1

if alpha and beta are imaginary cube root of unity then prove (alpha)^4 + (beta)^4 + (alpha)^-1 . (beta)^-1 = 0

(i) If alpha , beta be the imaginary cube root of unity, then show that alpha^4+beta^4+alpha^-1beta^-1=0

Find the equation whose roots are (alpha)/(beta) and (beta)/(alpha) , where alpha and beta are the roots of the equation x^(2)+2x+3=0 .

If alpha , beta are the roots of ax^2+bx +c=0 then (a alpha + b)^(-2)+( a beta + b)^(-2) =

If alpha , beta , gamma in {1,omega,omega^(2)} (where omega and omega^(2) are imaginery cube roots of unity), then number of triplets (alpha,beta,gamma) such that |(a alpha+b beta+c gamma)/(a beta+b gamma+c alpha)|=1 is

In the quadratic equation ax^2 + bx + c = 0 , if Delta = b^2-4ac and alpha + beta, alpha^2 + beta^2, alpha^3 + beta^3 are in GP. where alpha, beta are the roots of ax^2 + bx + c =0 , then

ICSE-COMPLEX NUMBERS-Chapter Test
  1. If x=a + b, y= a alpha + b beta, z= a beta + b alpha, where alpha and ...

    Text Solution

    |

  2. Find the square root of 5-12i

    Text Solution

    |

  3. Find the locus of a complex number z=x +yi, satisfying the relation |z...

    Text Solution

    |

  4. Express (13i)/(2-3i) in the form A + Bi

    Text Solution

    |

  5. If z= x +yi and (|z-1-i|+4)/(3|z-1-i|-2)=1, show that x^(2) + y^(2) -2...

    Text Solution

    |

  6. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  7. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  8. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  9. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  10. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  11. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  12. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  13. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  14. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  15. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  16. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  17. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  18. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  19. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  20. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  21. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |