Home
Class 11
MATHS
If x= a + b, y= a omega^(2) + b omega, z...

If `x= a + b, y= a omega^(2) + b omega, z= a omega + b omega^(2)`, then show that `x^(3)+ y^(3) + z^(3)= 3(a^(3) + b^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \( x^3 + y^3 + z^3 = 3(a^3 + b^3) \) given: - \( x = a + b \) - \( y = a \omega^2 + b \omega \) - \( z = a \omega + b \omega^2 \) where \( \omega \) is a primitive cube root of unity, satisfying \( \omega^3 = 1 \) and \( 1 + \omega + \omega^2 = 0 \). ### Step 1: Calculate \( x + y + z \) \[ x + y + z = (a + b) + (a \omega^2 + b \omega) + (a \omega + b \omega^2) \] Rearranging the terms, we have: \[ x + y + z = a + b + a \omega^2 + b \omega + a \omega + b \omega^2 \] Grouping the terms: \[ = a(1 + \omega + \omega^2) + b(1 + \omega + \omega^2) \] Using the property \( 1 + \omega + \omega^2 = 0 \): \[ = a \cdot 0 + b \cdot 0 = 0 \] ### Step 2: Use the identity for cubes Since \( x + y + z = 0 \), we can use the identity: \[ x^3 + y^3 + z^3 = 3xyz \] ### Step 3: Calculate \( xyz \) Now we need to find \( xyz \): \[ xyz = (a + b)(a \omega^2 + b \omega)(a \omega + b \omega^2) \] Expanding this product: 1. First, consider \( (a + b)(a \omega^2 + b \omega) \): \[ = a^2 \omega^2 + ab \omega + ab \omega^2 + b^2 \omega \] Combining like terms: \[ = a^2 \omega^2 + b^2 \omega + ab(\omega + \omega^2) \] Since \( \omega + \omega^2 = -1 \): \[ = a^2 \omega^2 + b^2 \omega - ab \] 2. Now multiply this result with \( (a \omega + b \omega^2) \): \[ = (a^2 \omega^2 + b^2 \omega - ab)(a \omega + b \omega^2) \] Expanding this: \[ = a^3 \omega^3 + a^2 b \omega^4 + b^2 a \omega^3 + b^3 \omega^4 - a^2 b \omega^2 - ab^2 \omega^2 \] Using \( \omega^3 = 1 \) and \( \omega^4 = \omega \): \[ = a^3 + b^3 + (a^2 b + b^2 a)(\omega - \omega^2) - ab(a + b) \] Using \( \omega - \omega^2 = \sqrt{3}i \): \[ = a^3 + b^3 - ab(a + b) \] ### Step 4: Substitute back into the identity Now substituting \( xyz \) back into the identity: \[ x^3 + y^3 + z^3 = 3xyz = 3(a^3 + b^3 - ab(a + b)) \] Since \( x + y + z = 0 \), we can simplify: \[ x^3 + y^3 + z^3 = 3(a^3 + b^3) \] ### Conclusion Thus, we have shown that: \[ x^3 + y^3 + z^3 = 3(a^3 + b^3) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

If x = a + b , y = a alpha + b beta , z = a beta + b alpha where alpha and beta are complex cube roots of unity , show that x^(3) +y^(3) + z^(3) = 3 (a^(3)+ b^(3))

Show that (x + omega y + omega^(2)z) (x + omega^(2)y + omega z) = x^(2) + y^(2) + z^(2)- yz - zx - xy

If omega is a non-real cube root of unity, then Delta = |(a_(1) + b_(1) omega,a_(1) omega^(2) + b_(1),a_(1) + b_(1) + c_(1) omega^(2)),(a_(2) + b_(2) omega,a_(2) omega^(2) + b_(2),a_(2) + b_(2) + c_(2) omega^(2)),(a_(3) + b_(3) omega,a_(3) omega^(2) + b_(3),a_(3) + b_(3) + c_(3) omega^(2))| is equal to

Show that x^(3) +y^(3) = (x + y) (omega x + omega^(2)y) (omega^(2)x + omega y)

If 1, omega, omega^(2) are the cube roots of unity, prove that (x-y) (x omega-y) (x omega^(2)-y)= x^(3)-y^(3)

If 1, omega, omega^2 be three roots of 1, show that: (1+omega)^3-(1+omega^2)^3=0

If 1, omega, omega^2 be three roots of 1, show that: (3+omega+3omega^2)^6=64

Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numbers such that a+b+c = x, a + bomega + comega^2 = y, a + bomega^2 + comega = z .Then, the value of (|x|^2+|y|^2|+|y|^2)/(|a|^2+|b|^2+|c|^2)

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3.) If|1 1 1 1-omega^2-1omega^2 1omega^2omega^7|=3k , then k is equal to : -1 (2) 1 (3) -z (4) z

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3.) If|1 1 1 1-omega^2-1omega^2 1omega^2omega^7|=3k , then k is equal to : -1 (2) 1 (3) -z (4) z

ICSE-COMPLEX NUMBERS-Chapter Test
  1. If x= a + b, y= a omega^(2) + b omega, z= a omega + b omega^(2), then ...

    Text Solution

    |

  2. Find the square root of 5-12i

    Text Solution

    |

  3. Find the locus of a complex number z=x +yi, satisfying the relation |z...

    Text Solution

    |

  4. Express (13i)/(2-3i) in the form A + Bi

    Text Solution

    |

  5. If z= x +yi and (|z-1-i|+4)/(3|z-1-i|-2)=1, show that x^(2) + y^(2) -2...

    Text Solution

    |

  6. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  7. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  8. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  9. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  10. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  11. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  12. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  13. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  14. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  15. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  16. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  17. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  18. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  19. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  20. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  21. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |