Home
Class 11
MATHS
Show that sqrt([-1sqrt({-1-sqrt(-1+ ..."...

Show that `sqrt([-1sqrt({-1-sqrt(-1+ ..."to"oo)})]) = omega, or omega^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{-1 \sqrt{-1 - \sqrt{-1 + \ldots}}} = \omega \) or \( \omega^2 \), where \( \omega \) and \( \omega^2 \) are the cube roots of unity, we can follow these steps: ### Step 1: Define the Expression Let \( y = \sqrt{-1 \sqrt{-1 - \sqrt{-1 + \ldots}}} \). ### Step 2: Rewrite the Expression From the definition, we can express \( y \) as: \[ y = \sqrt{-1 - y} \] This is because the expression inside the square root continues indefinitely. ### Step 3: Square Both Sides Now, we square both sides to eliminate the square root: \[ y^2 = -1 - y \] ### Step 4: Rearrange the Equation Rearranging gives us: \[ y^2 + y + 1 = 0 \] ### Step 5: Solve the Quadratic Equation We can solve this quadratic equation using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = 1, c = 1 \). Substituting these values in: \[ y = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ y = \frac{-1 \pm \sqrt{1 - 4}}{2} \] \[ y = \frac{-1 \pm \sqrt{-3}}{2} \] ### Step 6: Simplify the Roots Since \( \sqrt{-3} = i\sqrt{3} \), we can write: \[ y = \frac{-1 \pm i\sqrt{3}}{2} \] ### Step 7: Identify the Roots The two roots are: \[ y_1 = \frac{-1 + i\sqrt{3}}{2}, \quad y_2 = \frac{-1 - i\sqrt{3}}{2} \] ### Step 8: Relate to Cube Roots of Unity The roots \( y_1 \) and \( y_2 \) can be identified as the cube roots of unity: \[ \omega = \frac{-1 + i\sqrt{3}}{2}, \quad \omega^2 = \frac{-1 - i\sqrt{3}}{2} \] ### Conclusion Thus, we have shown that: \[ \sqrt{-1 \sqrt{-1 - \sqrt{-1 + \ldots}}} = \omega \text{ or } \omega^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

sqrt(-1-sqrt(-1-sqrt(-1oo))) is equal to (where omega is the imaginary cube root of unity and i=sqrt(-1))

Given that 1, omega, omega^(2) are cube roots of unity. Show that (1- omega + omega^(2))^(5) + (1 + omega - omega^(2))^(5)= 32

sqrt 2(sqrt 2+1) - sqrt 2 (1+sqrt2) =?

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .

Show that: 1/(3-sqrt(8))-1/(sqrt(8)-sqrt(7))+1/(sqrt(7)-sqrt(6))-1/(sqrt(6)-sqrt(5))+1/(sqrt(5)-2)=5

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

lim_(x rarr oo)(sqrt(x+1)-sqrt(x))

If y=sqrt(x+sqrt(x+sqrt(x+\ dotto\ oo))) , prove that (dy)/(dx)=1/(2\ y-1)

lim_(h rarr oo)log(sqrt(h-1)+sqrt(h))

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3.) If|1 1 1 1-omega^2-1omega^2 1omega^2omega^7|=3k , then k is equal to : -1 (2) 1 (3) -z (4) z

ICSE-COMPLEX NUMBERS-Chapter Test
  1. Show that sqrt([-1sqrt({-1-sqrt(-1+ ..."to"oo)})]) = omega, or omega^(...

    Text Solution

    |

  2. Find the square root of 5-12i

    Text Solution

    |

  3. Find the locus of a complex number z=x +yi, satisfying the relation |z...

    Text Solution

    |

  4. Express (13i)/(2-3i) in the form A + Bi

    Text Solution

    |

  5. If z= x +yi and (|z-1-i|+4)/(3|z-1-i|-2)=1, show that x^(2) + y^(2) -2...

    Text Solution

    |

  6. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  7. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  8. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  9. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  10. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  11. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  12. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  13. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  14. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  15. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  16. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  17. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  18. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  19. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  20. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  21. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |