Home
Class 11
MATHS
Simiplify : sqrt(-64).(3 + sqrt(-361))...

Simiplify : `sqrt(-64).(3 + sqrt(-361))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sqrt{-64} \cdot (3 + \sqrt{-361}) \), we will follow these steps: ### Step 1: Identify the square roots of negative numbers First, we recognize that both \( \sqrt{-64} \) and \( \sqrt{-361} \) can be expressed in terms of the imaginary unit \( i \), where \( i = \sqrt{-1} \). ### Step 2: Simplify \( \sqrt{-64} \) We can write: \[ \sqrt{-64} = \sqrt{64} \cdot \sqrt{-1} = 8i \] because \( \sqrt{64} = 8 \). ### Step 3: Simplify \( \sqrt{-361} \) Similarly, we simplify \( \sqrt{-361} \): \[ \sqrt{-361} = \sqrt{361} \cdot \sqrt{-1} = 19i \] because \( \sqrt{361} = 19 \). ### Step 4: Substitute back into the expression Now we substitute these values back into the original expression: \[ \sqrt{-64} \cdot (3 + \sqrt{-361}) = 8i \cdot (3 + 19i) \] ### Step 5: Distribute \( 8i \) Next, we distribute \( 8i \) across the terms inside the parentheses: \[ 8i \cdot 3 + 8i \cdot 19i = 24i + 152i^2 \] ### Step 6: Substitute \( i^2 \) with \(-1\) Since \( i^2 = -1 \), we can replace \( 152i^2 \) with \(-152\): \[ 24i + 152(-1) = 24i - 152 \] ### Final Result Thus, the simplified expression is: \[ 24i - 152 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (C)|21 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (D)|20 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Simiplify : sqrt(-(49)/(25)) sqrt(-(1)/(9))

Simiplify : (1+ i)^(-1)

Simiplify : (sqrt((5+12i)) + sqrt((5-12i)))/(sqrt((5+12i))-sqrt((5-12i)))

Simiplify : (3-7i)^(2)

Simplify : (7)/(sqrt(17) - 2sqrt3)-( 3)/(sqrt(17) +2sqrt3)

Simplify : (sqrt(2))/(sqrt(6)-sqrt(2))- (sqrt(3))/(sqrt(6)+sqrt(2))

(3 - sqrt(3))(3+sqrt(3)) =

Simplify: (3+sqrt 3)(3-sqrt3)

Simplify: (i) (3sqrt(2)-2sqrt(2))/(3sqrt(2)+\ 2sqrt(3))+(sqrt(12))/(sqrt(3)-\ sqrt(2)) (ii) (sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3))+(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3))

Simplify: 2/(sqrt(5)+\ sqrt(3))+1/(sqrt(3)+\ sqrt(2))-3/(sqrt(5)+\ sqrt(2))