Home
Class 11
MATHS
If (-2 + sqrt-3) (-3 + 2 sqrt-3)=a +bi, ...

If `(-2 + sqrt-3) (-3 + 2 sqrt-3)=a +bi`, find the real numbers a and b with values of a and b, also find the modulus of `a+bi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((-2 + \sqrt{-3})(-3 + 2\sqrt{-3})\) and express it in the form \(a + bi\), where \(a\) and \(b\) are real numbers. After that, we will find the modulus of the complex number. ### Step-by-Step Solution: 1. **Rewrite the Complex Numbers**: We start by rewriting the square roots of negative numbers using \(i\), where \(i = \sqrt{-1}\). Thus: \[ \sqrt{-3} = i\sqrt{3} \] Therefore, we can rewrite the expression as: \[ (-2 + i\sqrt{3})(-3 + 2i\sqrt{3}) \] 2. **Expand the Expression**: We will now use the distributive property (FOIL method) to expand the expression: \[ (-2)(-3) + (-2)(2i\sqrt{3}) + (i\sqrt{3})(-3) + (i\sqrt{3})(2i\sqrt{3}) \] This simplifies to: \[ 6 - 4i\sqrt{3} - 3i\sqrt{3} + 2(i^2)(\sqrt{3})(\sqrt{3}) \] Since \(i^2 = -1\), we have: \[ 2(-1)(\sqrt{3})(\sqrt{3}) = -6 \] 3. **Combine Like Terms**: Now we can combine all the terms: \[ 6 - 6 - 4i\sqrt{3} - 3i\sqrt{3} = 0 - 7i\sqrt{3} \] This gives us: \[ 0 - 7i\sqrt{3} = 0 + (-7\sqrt{3})i \] 4. **Identify Real and Imaginary Parts**: From the expression \(0 - 7i\sqrt{3}\), we can identify: \[ a = 0 \quad \text{and} \quad b = -7\sqrt{3} \] 5. **Find the Modulus**: The modulus of a complex number \(a + bi\) is given by: \[ |a + bi| = \sqrt{a^2 + b^2} \] Substituting the values of \(a\) and \(b\): \[ |0 + (-7\sqrt{3})i| = \sqrt{0^2 + (-7\sqrt{3})^2} = \sqrt{0 + 49 \cdot 3} = \sqrt{147} \] ### Final Answers: - The values of \(a\) and \(b\) are: \[ a = 0, \quad b = -7\sqrt{3} \] - The modulus of \(a + bi\) is: \[ |a + bi| = \sqrt{147} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (D)|20 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (E )|12 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi , find the real numbers a and b. With these values of a and b, also find the modulus of a+ bi

If tan(A-B)=1, and sec(A+B)=2/sqrt3, find the smallest positive values of A and B and also their most general values.

If tan (A-B) = (1)/(sqrt3) and sin A = (1)/(sqrt2) find the value of B.

If a,b,c are positive real numbers such that a + b +c=18, find the maximum value of a^2b^3c^4

If tan(A+B)=sqrt(3) and sqrt(3)tan(A-B)=1 , find the angles A and B,where A and B are Acute Angles.

If the expression (-3 I ^(2) + 2i )/(2 +i) is written in the form a + bi, where a and b are real numbers and I = sqrt-1, what is the value of a ?

If 2 cos (A-B) = 2 sin ( A+ B) = sqrt3 find the value of acute angles A and B .

If (sqrt(2))^(x)+(sqrt(3))^(x)=(sqrt(13))^(x//2) , then the number of real values of x is

If i=sqrt(-1), and ((7+5i))/((-2-6i))=a+bi , where a and b are real numbers, then what is the value of |a+b| ?

If log_(sqrt8) b = 3 1/3 , then find the value of b.