Home
Class 11
MATHS
Let z(1)=2 -I, z(2)= -2 +i, find (i) Re ...

Let `z_(1)=2 -I, z_(2)= -2 +i`, find (i) Re `((z_(1)z_(2))/(bar(z)_(1)))`, (ii) Im `((1)/(z_(1)bar(z)_(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will break it down into two parts as given in the question. ### Given: - \( z_1 = 2 - i \) - \( z_2 = -2 + i \) ### Part (i): Find \( \text{Re} \left( \frac{z_1 z_2}{\overline{z_1}} \right) \) 1. **Calculate \( \overline{z_1} \)**: \[ \overline{z_1} = \overline{(2 - i)} = 2 + i \] 2. **Calculate \( z_1 z_2 \)**: \[ z_1 z_2 = (2 - i)(-2 + i) \] Using the distributive property: \[ = 2 \cdot (-2) + 2 \cdot i - i \cdot (-2) - i \cdot i \] \[ = -4 + 2i + 2i - (-1) \] \[ = -4 + 4i + 1 = -3 + 4i \] 3. **Now, substitute into the expression**: \[ \frac{z_1 z_2}{\overline{z_1}} = \frac{-3 + 4i}{2 + i} \] 4. **Multiply numerator and denominator by the conjugate of the denominator**: \[ = \frac{(-3 + 4i)(2 - i)}{(2 + i)(2 - i)} \] 5. **Calculate the denominator**: \[ (2 + i)(2 - i) = 2^2 - i^2 = 4 - (-1) = 5 \] 6. **Calculate the numerator**: \[ (-3 + 4i)(2 - i) = -3 \cdot 2 + 3i + 4i \cdot 2 - 4i^2 \] \[ = -6 + 3i + 8i + 4 = -2 + 11i \] 7. **Putting it all together**: \[ \frac{-2 + 11i}{5} = -\frac{2}{5} + \frac{11}{5}i \] 8. **Find the real part**: \[ \text{Re} \left( \frac{z_1 z_2}{\overline{z_1}} \right) = -\frac{2}{5} \] ### Part (ii): Find \( \text{Im} \left( \frac{1}{z_1 \overline{z_2}} \right) \) 1. **Calculate \( \overline{z_2} \)**: \[ \overline{z_2} = \overline{(-2 + i)} = -2 - i \] 2. **Calculate \( z_1 \overline{z_2} \)**: \[ z_1 \overline{z_2} = (2 - i)(-2 - i) \] Using the distributive property: \[ = 2 \cdot (-2) + 2 \cdot (-i) - i \cdot (-2) - i \cdot (-i) \] \[ = -4 - 2i + 2i - 1 = -4 - 1 = -5 \] 3. **Now, substitute into the expression**: \[ \frac{1}{z_1 \overline{z_2}} = \frac{1}{-5} = -\frac{1}{5} \] 4. **Identify the imaginary part**: \[ \text{Im} \left( \frac{1}{z_1 \overline{z_2}} \right) = 0 \] ### Final Answers: (i) \( \text{Re} \left( \frac{z_1 z_2}{\overline{z_1}} \right) = -\frac{2}{5} \) (ii) \( \text{Im} \left( \frac{1}{z_1 \overline{z_2}} \right) = 0 \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (C)|21 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (D)|20 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

if z_(1) = 3-i and z_(2) = -3 +i, then find Re ((z_(1)z_(2))/(barz_(1)))

if z_(1)=1-i and z_(2) = -2 + 4i then find Im((z_(1)z_(2))/barz_(1))

Let z_1=2-i ,z_2=-2+i . Find (i) Re ((z_1z_2)/( bar z_1)) (ii) Im (1/(z_1 bar z_1))

Let z_1=2-i ,""""z_2=-2+i . Find (i) Re ((z_1z_2)/( bar z_1)) (ii) Im (1/(z_1 bar z_1))

If z_1=2-i ,\ z_2=-2+i , find : R e((z_1z_2)/bar(z_1))

If z_(1)=2-i, z_(2)=1+ 2i, then find the value of the following : (i) Re((z_(1)*z_(2))/(bar(z)_(2))) (ii) Im (z_(1)*bar(z)_(2))

If z_(1) = 1 +iand z_(2) = -3+2i then lm ((z_(1)z_(2))/barz_(1)) is

Let z_(1)=2-i and z_(2)=2+i , then "Im"((1)/(z_(1)z_(2))) is

If z_(1) = 2 - i , z_(2) = 1 + i , " find " |(z_(1) + z_(2) + 1)/( z_(1) -z_(2) + 1)|

Find Re ((z_(1)z_(2))/(z_(1))), give z_(1)=2-i and z_(2)=-2+i

ICSE-COMPLEX NUMBERS-Exercise (B)
  1. Perform the indicated operation and give your answer in the form x+yi,...

    Text Solution

    |

  2. If x+ yi= (u+ vi)/(u-yi), prove that x^(2) + y^(2)=1

    Text Solution

    |

  3. Prove that : [4 + 3 sqrt(-20)]^((1)/(2)) + [4 -3 sqrt(-20)]^((1)/(2))...

    Text Solution

    |

  4. Express the following in the form a+ bi sqrt((5(2+i))/(2-i))

    Text Solution

    |

  5. Express the following in the form a+ bi ((3-i)^(2))/(2+i)

    Text Solution

    |

  6. Express the following in the form a+ bi (1+i)^(-3)

    Text Solution

    |

  7. Express the following in the form a+ bi ((4i^(3)-i)^(2))/(2i+1)

    Text Solution

    |

  8. Express the following in the form a+ bi (i-1)/(i+1)

    Text Solution

    |

  9. Express the following in the form a+ bi (2+i)/((3-i)(1+2i))

    Text Solution

    |

  10. Express the following in the form a+ bi (5)/(2i-7i^(2))

    Text Solution

    |

  11. Prove that ((-1 + isqrt3)/(2))^(3) is a positive integer

    Text Solution

    |

  12. If one of the values of x of the equation 2x^(2)-6x + k= 0 " be " (1)/...

    Text Solution

    |

  13. Define conjugate complex numbers and show that their sum and product a...

    Text Solution

    |

  14. If bar(z)= -z ne 0, show that z is necessarily a purely imaginary numb...

    Text Solution

    |

  15. z and z' are complex numbers such that their product zz' = 3-4i. Given...

    Text Solution

    |

  16. If a+bi= ((x+i)^(2))/(2x^(2)+1), prove that a^(2) + b^(2)= ((x^(2) + 1...

    Text Solution

    |

  17. Let z(1)=2 -I, z(2)= -2 +i, find (i) Re ((z(1)z(2))/(bar(z)(1))), (ii)...

    Text Solution

    |

  18. If z(1)= 3 + 5i and z(2)= 2- 3i, then verify that bar(((z(1))/(z(2))))...

    Text Solution

    |

  19. If x= -2 - sqrt3i, where i= sqrt(-1, find the value of 2x^(4) + 5x^(3)...

    Text Solution

    |

  20. If z= -3 + sqrt2i, then prove that z^(4) + 5z^(3) + 8z^(2) + 7z + 4 is...

    Text Solution

    |