Home
Class 11
MATHS
Find the modulus of (1-i)^(-2) + (1+ i)^...

Find the modulus of `(1-i)^(-2) + (1+ i)^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus of \((1-i)^{-2} + (1+i)^{-2}\), we will follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression: \[ z = (1-i)^{-2} + (1+i)^{-2} \] This can be expressed as: \[ z = \frac{1}{(1-i)^2} + \frac{1}{(1+i)^2} \] ### Step 2: Calculate \((1-i)^2\) and \((1+i)^2\) Next, we calculate \((1-i)^2\) and \((1+i)^2\): \[ (1-i)^2 = 1^2 - 2(1)(i) + i^2 = 1 - 2i - 1 = -2i \] \[ (1+i)^2 = 1^2 + 2(1)(i) + i^2 = 1 + 2i - 1 = 2i \] ### Step 3: Substitute back into the expression Now we substitute these results back into our expression for \(z\): \[ z = \frac{1}{-2i} + \frac{1}{2i} \] ### Step 4: Simplify the fractions We simplify each term: \[ \frac{1}{-2i} = -\frac{1}{2i} \quad \text{and} \quad \frac{1}{2i} = \frac{1}{2i} \] Thus, \[ z = -\frac{1}{2i} + \frac{1}{2i} = 0 \] ### Step 5: Find the modulus The modulus of \(z\) is: \[ |z| = |0| = 0 \] ### Final Answer Therefore, the modulus of \((1-i)^{-2} + (1+i)^{-2}\) is: \[ \boxed{0} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (D)|20 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (E )|12 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Find the modulus of (2 -3i)/( 4+i)

Find the modulus of (1+i)/(1-i)-(1-i)/(1+i)

Find the modulus of ((3+2i)^(2))/(4-3i)

The modulus of (1+i)(3+4i)=

Find the modulus of (1+i)/(1-i)-(1-i)/(1+i) .

Find the modulus of (1+i)/(1-i)-(1-i)/(1+i) .

Find the modulus of ((3+2i) (1+i) (2+3i))/((3+4i) (4+5i))

Find the conjugate of ((1-2i)^(2))/(2 + i)

Find modulus of (i) (2+4i)/(2-6i)

The modulus of ((2+3i)^(2))/(2+i) is

ICSE-COMPLEX NUMBERS-Exercise (C)
  1. If (-2 + sqrt-3) (-3 + 2 sqrt-3)=a +bi, find the real numbers a and b ...

    Text Solution

    |

  2. Find the modulus of (1-i)^(-2) + (1+ i)^(-2)

    Text Solution

    |

  3. If z= 6+8i, verify that |z|= |bar(z)|

    Text Solution

    |

  4. If z= 6+8i, verify that -|z| le " Re " (z) le |z|

    Text Solution

    |

  5. If z= 6+8i, verify that -|z| lt "Im" (z) lt |z|

    Text Solution

    |

  6. If z= 6+8i, verify that z^(-1)= (bar(z))/(|z|^(2))

    Text Solution

    |

  7. If z(1)=3 + 4i,z(2)= 8-15i, verify that |-z(1)| = |z(1)|

    Text Solution

    |

  8. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(1)^(2)| = |z(2)|^(2)

    Text Solution

    |

  9. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(1)z(2) |= |z(1)| |z(2)|

    Text Solution

    |

  10. If z(1)=3 + 4i,z(2)= 8-15i, verify that |(z(1))/(z(2))|= (|z(1)|)/(...

    Text Solution

    |

  11. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(1) + z(2)| lt |z(1)| + ...

    Text Solution

    |

  12. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(2)-z(1)| gt ||z(2)|- |z...

    Text Solution

    |

  13. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(1) + z(2)|^(2) + |z(1)-...

    Text Solution

    |

  14. Find the modulus of the following using the property of modulus (3+...

    Text Solution

    |

  15. Find the modulus of the following using the property of modulus (8+...

    Text Solution

    |

  16. Find the modulus of the following using the property of modulus (3+...

    Text Solution

    |

  17. Find the modulus of the following using the property of modulus ((2...

    Text Solution

    |

  18. Let z be a complex number such that |(z-5i)/(z+5i)|=1, then show that ...

    Text Solution

    |

  19. Find the complex number z satisfying the equation |(z-12)/(z-8i)|= (5)...

    Text Solution

    |

  20. If z is a complex number such that |z-1|= |z+1|, show that Re(z)= 0

    Text Solution

    |