Home
Class 11
MATHS
Find the modulus of the following using ...

Find the modulus of the following using the property of modulus
`(3+2i)/(2-5i) + (3-2i)/(2+5i)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus of the expression \((3+2i)/(2-5i) + (3-2i)/(2+5i)\), we can follow these steps: ### Step 1: Define the expression Let \( Z = \frac{3 + 2i}{2 - 5i} + \frac{3 - 2i}{2 + 5i} \). ### Step 2: Find a common denominator The common denominator for the two fractions is \((2 - 5i)(2 + 5i)\). ### Step 3: Rewrite the expression with the common denominator We can rewrite \( Z \) as: \[ Z = \frac{(3 + 2i)(2 + 5i) + (3 - 2i)(2 - 5i)}{(2 - 5i)(2 + 5i)} \] ### Step 4: Expand the numerators Now, we will expand the numerators: 1. For \((3 + 2i)(2 + 5i)\): \[ = 3 \cdot 2 + 3 \cdot 5i + 2i \cdot 2 + 2i \cdot 5i = 6 + 15i + 4i + 10i^2 = 6 + 19i - 10 \quad (\text{since } i^2 = -1) = -4 + 19i \] 2. For \((3 - 2i)(2 - 5i)\): \[ = 3 \cdot 2 - 3 \cdot 5i - 2i \cdot 2 + 2i \cdot 5i = 6 - 15i - 4i - 10i^2 = 6 - 19i + 10 = 16 - 19i \] ### Step 5: Combine the results Now we combine both results: \[ Z = \frac{(-4 + 19i) + (16 - 19i)}{(2 - 5i)(2 + 5i)} \] \[ = \frac{(-4 + 16) + (19i - 19i)}{(2 - 5i)(2 + 5i)} \] \[ = \frac{12}{(2 - 5i)(2 + 5i)} \] ### Step 6: Simplify the denominator The denominator can be simplified using the difference of squares: \[ (2 - 5i)(2 + 5i) = 2^2 - (5i)^2 = 4 + 25 = 29 \] ### Step 7: Final expression for Z Thus, we have: \[ Z = \frac{12}{29} \] ### Step 8: Find the modulus of Z Since \( Z \) is a real number, the modulus is simply the absolute value: \[ |Z| = \left|\frac{12}{29}\right| = \frac{12}{29} \] ### Final Answer The modulus of the given expression is \(\frac{12}{29}\).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (D)|20 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (E )|12 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Find the modulus of the following using the property of modulus (3+4i) (8-6i)

Find the modulus of the following using the property of modulus (8+15i)/(8-6i)

Find the modulus of the following using the property of modulus ((2-3i)(4+5i))/((1-4i)(2-i))

Find the modulus of (2 -3i)/( 4+i)

Find the modulus of the following : (1-isqrt(3))/(2+2i)

Find the modulus of the following complex number ( 3+ 4i) ( 1+ 5i)

Find the modulus and amplitude of -4i

Find the modulus of the following complex numbers (3 +2i) (5-4i)

Find modulus of (i) (2+4i)/(2-6i)

Find the modulus of the following complex numbers (1+i)/(1-i) - (1-i)/(1+i)

ICSE-COMPLEX NUMBERS-Exercise (C)
  1. Find the modulus of (1-i)^(-2) + (1+ i)^(-2)

    Text Solution

    |

  2. If z= 6+8i, verify that |z|= |bar(z)|

    Text Solution

    |

  3. If z= 6+8i, verify that -|z| le " Re " (z) le |z|

    Text Solution

    |

  4. If z= 6+8i, verify that -|z| lt "Im" (z) lt |z|

    Text Solution

    |

  5. If z= 6+8i, verify that z^(-1)= (bar(z))/(|z|^(2))

    Text Solution

    |

  6. If z(1)=3 + 4i,z(2)= 8-15i, verify that |-z(1)| = |z(1)|

    Text Solution

    |

  7. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(1)^(2)| = |z(2)|^(2)

    Text Solution

    |

  8. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(1)z(2) |= |z(1)| |z(2)|

    Text Solution

    |

  9. If z(1)=3 + 4i,z(2)= 8-15i, verify that |(z(1))/(z(2))|= (|z(1)|)/(...

    Text Solution

    |

  10. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(1) + z(2)| lt |z(1)| + ...

    Text Solution

    |

  11. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(2)-z(1)| gt ||z(2)|- |z...

    Text Solution

    |

  12. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(1) + z(2)|^(2) + |z(1)-...

    Text Solution

    |

  13. Find the modulus of the following using the property of modulus (3+...

    Text Solution

    |

  14. Find the modulus of the following using the property of modulus (8+...

    Text Solution

    |

  15. Find the modulus of the following using the property of modulus (3+...

    Text Solution

    |

  16. Find the modulus of the following using the property of modulus ((2...

    Text Solution

    |

  17. Let z be a complex number such that |(z-5i)/(z+5i)|=1, then show that ...

    Text Solution

    |

  18. Find the complex number z satisfying the equation |(z-12)/(z-8i)|= (5)...

    Text Solution

    |

  19. If z is a complex number such that |z-1|= |z+1|, show that Re(z)= 0

    Text Solution

    |

  20. Solve |z|+z= 2+ i, where z is a complex number

    Text Solution

    |