Home
Class 11
MATHS
Find the modulus of the following using ...

Find the modulus of the following using the property of modulus
`((2-3i)(4+5i))/((1-4i)(2-i))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus of the complex number given by the expression \(\frac{(2-3i)(4+5i)}{(1-4i)(2-i)}\), we can use the property of modulus, which states that the modulus of a quotient of complex numbers is equal to the quotient of their moduli: \[ |z| = \frac{|a|}{|b|} \] where \(z = \frac{a}{b}\). ### Step 1: Calculate the modulus of the numerator \((2-3i)(4+5i)\) First, we calculate the modulus of each factor in the numerator. 1. For \(2 - 3i\): \[ |2 - 3i| = \sqrt{2^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13} \] 2. For \(4 + 5i\): \[ |4 + 5i| = \sqrt{4^2 + 5^2} = \sqrt{16 + 25} = \sqrt{41} \] Now, the modulus of the numerator is: \[ |(2-3i)(4+5i)| = |2-3i| \cdot |4+5i| = \sqrt{13} \cdot \sqrt{41} = \sqrt{13 \cdot 41} = \sqrt{533} \] ### Step 2: Calculate the modulus of the denominator \((1-4i)(2-i)\) Next, we calculate the modulus of each factor in the denominator. 1. For \(1 - 4i\): \[ |1 - 4i| = \sqrt{1^2 + (-4)^2} = \sqrt{1 + 16} = \sqrt{17} \] 2. For \(2 - i\): \[ |2 - i| = \sqrt{2^2 + (-1)^2} = \sqrt{4 + 1} = \sqrt{5} \] Now, the modulus of the denominator is: \[ |(1-4i)(2-i)| = |1-4i| \cdot |2-i| = \sqrt{17} \cdot \sqrt{5} = \sqrt{17 \cdot 5} = \sqrt{85} \] ### Step 3: Calculate the modulus of the entire expression Now we can find the modulus of the entire expression: \[ \left|\frac{(2-3i)(4+5i)}{(1-4i)(2-i)}\right| = \frac{|(2-3i)(4+5i)|}{|(1-4i)(2-i)|} = \frac{\sqrt{533}}{\sqrt{85}} = \sqrt{\frac{533}{85}} \] ### Final Result Thus, the modulus of the given complex number is: \[ \sqrt{\frac{533}{85}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (D)|20 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (E )|12 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Find the modulus of the following using the property of modulus (3+4i) (8-6i)

Find the modulus of the following using the property of modulus (8+15i)/(8-6i)

Find the modulus of the following using the property of modulus (3+2i)/(2-5i) + (3-2i)/(2+5i)

The modulus of ((1+2i)(3-4i))/((4+3i)(2-3i)) is

Find the modulus of 8-6i^(7) ?

Find the modulus of (2 -3i)/( 4+i)

Find the modulus of the following : (1-isqrt(3))/(2+2i)

Find the modulus of the following complex numbers 8-6i^(7)

Find the modulus of the following complex number ( 3+ 4i) ( 1+ 5i)

Find the modulus and amplitude of -4i

ICSE-COMPLEX NUMBERS-Exercise (C)
  1. Find the modulus of (1-i)^(-2) + (1+ i)^(-2)

    Text Solution

    |

  2. If z= 6+8i, verify that |z|= |bar(z)|

    Text Solution

    |

  3. If z= 6+8i, verify that -|z| le " Re " (z) le |z|

    Text Solution

    |

  4. If z= 6+8i, verify that -|z| lt "Im" (z) lt |z|

    Text Solution

    |

  5. If z= 6+8i, verify that z^(-1)= (bar(z))/(|z|^(2))

    Text Solution

    |

  6. If z(1)=3 + 4i,z(2)= 8-15i, verify that |-z(1)| = |z(1)|

    Text Solution

    |

  7. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(1)^(2)| = |z(2)|^(2)

    Text Solution

    |

  8. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(1)z(2) |= |z(1)| |z(2)|

    Text Solution

    |

  9. If z(1)=3 + 4i,z(2)= 8-15i, verify that |(z(1))/(z(2))|= (|z(1)|)/(...

    Text Solution

    |

  10. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(1) + z(2)| lt |z(1)| + ...

    Text Solution

    |

  11. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(2)-z(1)| gt ||z(2)|- |z...

    Text Solution

    |

  12. If z(1)=3 + 4i,z(2)= 8-15i, verify that |z(1) + z(2)|^(2) + |z(1)-...

    Text Solution

    |

  13. Find the modulus of the following using the property of modulus (3+...

    Text Solution

    |

  14. Find the modulus of the following using the property of modulus (8+...

    Text Solution

    |

  15. Find the modulus of the following using the property of modulus (3+...

    Text Solution

    |

  16. Find the modulus of the following using the property of modulus ((2...

    Text Solution

    |

  17. Let z be a complex number such that |(z-5i)/(z+5i)|=1, then show that ...

    Text Solution

    |

  18. Find the complex number z satisfying the equation |(z-12)/(z-8i)|= (5)...

    Text Solution

    |

  19. If z is a complex number such that |z-1|= |z+1|, show that Re(z)= 0

    Text Solution

    |

  20. Solve |z|+z= 2+ i, where z is a complex number

    Text Solution

    |