Home
Class 11
MATHS
Given the complex number z= (-1 + sqrt3i...

Given the complex number `z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2)` (where `i= sqrt-1`)
Calculate the modulus and argument of `(w)/(z)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the modulus and argument of the complex number \( \frac{w}{z} \), where \( z = \frac{-1 + \sqrt{3}i}{2} \) and \( w = \frac{-1 - \sqrt{3}i}{2} \). ### Step-by-Step Solution: 1. **Write the Complex Numbers:** \[ z = \frac{-1 + \sqrt{3}i}{2}, \quad w = \frac{-1 - \sqrt{3}i}{2} \] 2. **Calculate \( \frac{w}{z} \):** \[ \frac{w}{z} = \frac{\frac{-1 - \sqrt{3}i}{2}}{\frac{-1 + \sqrt{3}i}{2}} = \frac{-1 - \sqrt{3}i}{-1 + \sqrt{3}i} \] 3. **Rationalize the Denominator:** To rationalize, multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{w}{z} = \frac{(-1 - \sqrt{3}i)(-1 - \sqrt{3}i)}{(-1 + \sqrt{3}i)(-1 - \sqrt{3}i)} \] 4. **Calculate the Denominator:** \[ (-1 + \sqrt{3}i)(-1 - \sqrt{3}i) = (-1)^2 - (\sqrt{3}i)^2 = 1 + 3 = 4 \] 5. **Calculate the Numerator:** \[ (-1 - \sqrt{3}i)(-1 - \sqrt{3}i) = (-1)^2 + 2(-1)(-\sqrt{3}i) + (-\sqrt{3}i)^2 = 1 + 2\sqrt{3}i - 3 = -2 + 2\sqrt{3}i \] 6. **Combine Results:** \[ \frac{w}{z} = \frac{-2 + 2\sqrt{3}i}{4} = \frac{-1 + \sqrt{3}i}{2} \] 7. **Identify Real and Imaginary Parts:** \[ x = -\frac{1}{2}, \quad y = \frac{\sqrt{3}}{2} \] 8. **Calculate the Modulus:** \[ | \frac{w}{z} | = \sqrt{x^2 + y^2} = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \] \[ = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1 \] 9. **Calculate the Argument:** \[ \theta = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\right) = \tan^{-1}(-\sqrt{3}) \] Since \( x < 0 \) and \( y > 0 \), the angle is in the second quadrant: \[ \theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \] ### Final Results: - **Modulus:** \( | \frac{w}{z} | = 1 \) - **Argument:** \( \arg\left(\frac{w}{z}\right) = \frac{2\pi}{3} \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (E )|12 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (F )|28 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (C)|21 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Calculate the modulus and argument of w and z

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Represent z and w accurately on the complex plane.

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Prove that each of these complex numbers is the square of the other

Represent the complex numbers z= 1 + sqrt3i into polar form

Express the comple number ((1+sqrt(3)i)^(2))/(sqrt(3)-i) in the form of a+ib . Hence find the modulus and argument of the complex number.

Principal argument of complex number z=(sqrt3+i)/(sqrt3-i) equal

Represent on complex plane the complex numbers w=3 + 4i and z= 6-3i together with w +z and w-z . Obtain the modulus and argument of w and z.

The complex number, z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

ICSE-COMPLEX NUMBERS-Exercise (D)
  1. Find the modulus and amplitude of the following complex numbers and he...

    Text Solution

    |

  2. Find the modulus and amplitude of the following complex numbers and he...

    Text Solution

    |

  3. Find the modulus and amplitude of the following complex numbers and he...

    Text Solution

    |

  4. Find the modulus and amplitude of the following complex numbers and he...

    Text Solution

    |

  5. Find the modulus and amplitude of the following complex numbers and he...

    Text Solution

    |

  6. Find the modulus and amplitude of the following complex numbers and he...

    Text Solution

    |

  7. Find the modulus and amplitude of the following complex numbers and he...

    Text Solution

    |

  8. Find the modulus and amplitude of the following complex numbers and he...

    Text Solution

    |

  9. Find the modulus and amplitude of the following complex numbers and he...

    Text Solution

    |

  10. Find the modulus and amplitude of the following complex numbers and he...

    Text Solution

    |

  11. Find the modulus and amplitude of the following complex numbers and he...

    Text Solution

    |

  12. Find the modulus and amplitude of the following complex numbers and he...

    Text Solution

    |

  13. Change the following complex numbers into polar form -4+4 sqrt3i

    Text Solution

    |

  14. Change the following complex numbers into polar form (1+ 3i)/(1-2i)

    Text Solution

    |

  15. Change the following complex numbers into polar form (1+ 2i)/(1-(1-...

    Text Solution

    |

  16. Change the following complex numbers into polar form (1+ 7i)/((2-i)...

    Text Solution

    |

  17. Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) ...

    Text Solution

    |

  18. Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) ...

    Text Solution

    |

  19. Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) ...

    Text Solution

    |

  20. Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) ...

    Text Solution

    |