Home
Class 10
MATHS
If A=[{:(,0,2),(,5,-2):}], B=[{:(,1,-1),...

If `A=[{:(,0,2),(,5,-2):}], B=[{:(,1,-1),(,3,2):}]` and is a unit matrix of order `2 xx 2` find :
(i) AB (ii) BA (iii) AI
(Iv) `A^2` (v) `B^2A`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the problem step by step. Given matrices: \[ A = \begin{pmatrix} 0 & 2 \\ 5 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### (i) Find AB To find \( AB \), we multiply matrix \( A \) by matrix \( B \): \[ AB = \begin{pmatrix} 0 & 2 \\ 5 & -2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix} \] Calculating the elements: 1. First row, first column: \( 0 \cdot 1 + 2 \cdot 3 = 0 + 6 = 6 \) 2. First row, second column: \( 0 \cdot -1 + 2 \cdot 2 = 0 + 4 = 4 \) 3. Second row, first column: \( 5 \cdot 1 + (-2) \cdot 3 = 5 - 6 = -1 \) 4. Second row, second column: \( 5 \cdot -1 + (-2) \cdot 2 = -5 - 4 = -9 \) Thus, \[ AB = \begin{pmatrix} 6 & 4 \\ -1 & -9 \end{pmatrix} \] ### (ii) Find BA To find \( BA \), we multiply matrix \( B \) by matrix \( A \): \[ BA = \begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 5 & -2 \end{pmatrix} \] Calculating the elements: 1. First row, first column: \( 1 \cdot 0 + (-1) \cdot 5 = 0 - 5 = -5 \) 2. First row, second column: \( 1 \cdot 2 + (-1) \cdot -2 = 2 + 2 = 4 \) 3. Second row, first column: \( 3 \cdot 0 + 2 \cdot 5 = 0 + 10 = 10 \) 4. Second row, second column: \( 3 \cdot 2 + 2 \cdot -2 = 6 - 4 = 2 \) Thus, \[ BA = \begin{pmatrix} -5 & 4 \\ 10 & 2 \end{pmatrix} \] ### (iii) Find AI To find \( AI \), we multiply matrix \( A \) by the identity matrix \( I \): \[ AI = \begin{pmatrix} 0 & 2 \\ 5 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Calculating the elements: 1. First row, first column: \( 0 \cdot 1 + 2 \cdot 0 = 0 + 0 = 0 \) 2. First row, second column: \( 0 \cdot 0 + 2 \cdot 1 = 0 + 2 = 2 \) 3. Second row, first column: \( 5 \cdot 1 + (-2) \cdot 0 = 5 + 0 = 5 \) 4. Second row, second column: \( 5 \cdot 0 + (-2) \cdot 1 = 0 - 2 = -2 \) Thus, \[ AI = \begin{pmatrix} 0 & 2 \\ 5 & -2 \end{pmatrix} \] ### (iv) Find \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = \begin{pmatrix} 0 & 2 \\ 5 & -2 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 5 & -2 \end{pmatrix} \] Calculating the elements: 1. First row, first column: \( 0 \cdot 0 + 2 \cdot 5 = 0 + 10 = 10 \) 2. First row, second column: \( 0 \cdot 2 + 2 \cdot -2 = 0 - 4 = -4 \) 3. Second row, first column: \( 5 \cdot 0 + (-2) \cdot 5 = 0 - 10 = -10 \) 4. Second row, second column: \( 5 \cdot 2 + (-2) \cdot -2 = 10 + 4 = 14 \) Thus, \[ A^2 = \begin{pmatrix} 10 & -4 \\ -10 & 14 \end{pmatrix} \] ### (v) Find \( B^2A \) To find \( B^2 \), we first calculate \( B \times B \): \[ B^2 = \begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix} \] Calculating the elements: 1. First row, first column: \( 1 \cdot 1 + (-1) \cdot 3 = 1 - 3 = -2 \) 2. First row, second column: \( 1 \cdot -1 + (-1) \cdot 2 = -1 - 2 = -3 \) 3. Second row, first column: \( 3 \cdot 1 + 2 \cdot 3 = 3 + 6 = 9 \) 4. Second row, second column: \( 3 \cdot -1 + 2 \cdot 2 = -3 + 4 = 1 \) Thus, \[ B^2 = \begin{pmatrix} -2 & -3 \\ 9 & 1 \end{pmatrix} \] Now, we multiply \( B^2 \) by \( A \): \[ B^2A = \begin{pmatrix} -2 & -3 \\ 9 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 5 & -2 \end{pmatrix} \] Calculating the elements: 1. First row, first column: \( -2 \cdot 0 + -3 \cdot 5 = 0 - 15 = -15 \) 2. First row, second column: \( -2 \cdot 2 + -3 \cdot -2 = -4 + 6 = 2 \) 3. Second row, first column: \( 9 \cdot 0 + 1 \cdot 5 = 0 + 5 = 5 \) 4. Second row, second column: \( 9 \cdot 2 + 1 \cdot -2 = 18 - 2 = 16 \) Thus, \[ B^2A = \begin{pmatrix} -15 & 2 \\ 5 & 16 \end{pmatrix} \] ### Summary of Results: 1. \( AB = \begin{pmatrix} 6 & 4 \\ -1 & -9 \end{pmatrix} \) 2. \( BA = \begin{pmatrix} -5 & 4 \\ 10 & 2 \end{pmatrix} \) 3. \( AI = \begin{pmatrix} 0 & 2 \\ 5 & -2 \end{pmatrix} \) 4. \( A^2 = \begin{pmatrix} 10 & -4 \\ -10 & 14 \end{pmatrix} \) 5. \( B^2A = \begin{pmatrix} -15 & 2 \\ 5 & 16 \end{pmatrix} \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B , find matrix M.

If A=[{:(,1,2),(,2,1):}] and B=[{:(,2,1),(,1,2):}] find : (i) A(BA) (ii) (AB) B.

If A=[{:(,8,6),(,-2,4):}] and B=[{:(,-3,5),(,1,0):}] then solve for 2 xx 2 matrix X such that (i) A+X=B (ii) X-B=A

If A=[{:(,2,-1),(,-1, 3):}]" evaluate "A^2-3A+3I , where I is a unit matrix of order 2.

Given A=[{:(,0,4,6),(,3,0,-1):}] and B=[{:(,0,1),(,-1,2),(,-5,-6):}] , is the following possible (i) AB (ii) BA (iii) A^2 .

Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}] . Find A^2+AB+B^2

If A=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}] Find AB and BA ( if it exist)

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

A=[{:(2,4),(3,2):}],B=[{:(1,3),(-2,5):}],C=[{:(-2,5),(3,4):}] find each of the following : (i) A+B (ii) A-B (iii) 3A-C (iv) AB (V) BA

Given A=[{:(,-1,0),(,2,-4):}] and B=[{:(,3,-3),(,-2,0):}] find the matrix X in each of the following (i) A+X=B (ii) A-X=B (iii) X-B=A

ICSE-MATRICES-Exercise 9C
  1. Evaluate : if possible (i) [3,2] [{:(,2),(,0):}] (ii) [1 , -2] [{:(,...

    Text Solution

    |

  2. If A=[{:(,0,2),(,5,-2):}], B=[{:(,1,-1),(,3,2):}] and is a unit matri...

    Text Solution

    |

  3. If A=[{:(,3,x),(,0,1):}] and B=[{:(,9,16),(,0,-y):}] find x and y when...

    Text Solution

    |

  4. Find x and y, if : (i) [{:(,4,3x),(,x,-2):}] [{:(,5),(,1):}]=[{:(,y,...

    Text Solution

    |

  5. If A=[{:(,1,3),(,2,4):}], B=[{:(,1,2),(,4,3):}] and C=[{:(,4,3),(,1,2)...

    Text Solution

    |

  6. Given A=[{:(,0,4,6),(,3,0,-1):}] and B=[{:(,0,1),(,-1,2),(,-5,-6):}], ...

    Text Solution

    |

  7. Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(...

    Text Solution

    |

  8. If M=[{:(,1,2),(,2,1):}] and I is a unit matrix of the same order as t...

    Text Solution

    |

  9. If A=[{:(,a,0),(,0,2):}], B=[{:(,0,-b),(,1,0):}], M=[{:(,1,-1),(,1,1):...

    Text Solution

    |

  10. Given A=[{:(,4,1),(,2,3):}] and B=[{:(,1,0),(,-2,01):}], Find (i) A-...

    Text Solution

    |

  11. If A=[{:(,1,4),(,1,-3):}] and B=[{:(,1,2),(,-1,-1):}], find: (A+B)...

    Text Solution

    |

  12. Find the matrix A, if B=[{:(,2,1),(,0,1):}] and B^2=B+1/2A.

    Text Solution

    |

  13. If A=[{:(,-1,1),(,a,b):}] and A^2=I, find a and b.

    Text Solution

    |

  14. If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2)...

    Text Solution

    |

  15. If A=[{:(,1,4),(,2,1):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2...

    Text Solution

    |

  16. Solve for x and y (i) [{:(,2,5),(,5,2):}] [{:(,x),(,y):}]=[{:(,-7),(...

    Text Solution

    |

  17. In each case given below, find : the order of matrix M, (i) M ...

    Text Solution

    |

  18. If A=[{:(,2,x),(,0,1):}] and B=[{:(,4,36),(,0,1):}], find the value of...

    Text Solution

    |

  19. If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,...

    Text Solution

    |

  20. If A and B are any two 2 xx 2 matrices such that AB=BA=B and B is not ...

    Text Solution

    |