Home
Class 10
MATHS
If A=[{:(,1,3),(,2,4):}], B=[{:(,1,2),(,...

If `A=[{:(,1,3),(,2,4):}], B=[{:(,1,2),(,4,3):}] and C=[{:(,4,3),(,1,2):}]`. Find
(i) (AB) C (ii) A (BC)
Is `A(BC)=(AB) C?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the products of the matrices \( A \), \( B \), and \( C \) in two different orders and check if they are equal. Given matrices: - \( A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \) - \( B = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \) - \( C = \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix} \) ### Step 1: Calculate \( AB \) To find \( AB \), we multiply matrix \( A \) with matrix \( B \): \[ AB = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \] Calculating each element: - First row, first column: \( 1 \times 1 + 3 \times 4 = 1 + 12 = 13 \) - First row, second column: \( 1 \times 2 + 3 \times 3 = 2 + 9 = 11 \) - Second row, first column: \( 2 \times 1 + 4 \times 4 = 2 + 16 = 18 \) - Second row, second column: \( 2 \times 2 + 4 \times 3 = 4 + 12 = 16 \) Thus, \[ AB = \begin{pmatrix} 13 & 11 \\ 18 & 16 \end{pmatrix} \] ### Step 2: Calculate \( (AB)C \) Now, we will multiply \( AB \) with \( C \): \[ (AB)C = \begin{pmatrix} 13 & 11 \\ 18 & 16 \end{pmatrix} \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix} \] Calculating each element: - First row, first column: \( 13 \times 4 + 11 \times 1 = 52 + 11 = 63 \) - First row, second column: \( 13 \times 3 + 11 \times 2 = 39 + 22 = 61 \) - Second row, first column: \( 18 \times 4 + 16 \times 1 = 72 + 16 = 88 \) - Second row, second column: \( 18 \times 3 + 16 \times 2 = 54 + 32 = 86 \) Thus, \[ (AB)C = \begin{pmatrix} 63 & 61 \\ 88 & 86 \end{pmatrix} \] ### Step 3: Calculate \( BC \) Next, we will calculate \( BC \): \[ BC = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix} \] Calculating each element: - First row, first column: \( 1 \times 4 + 2 \times 1 = 4 + 2 = 6 \) - First row, second column: \( 1 \times 3 + 2 \times 2 = 3 + 4 = 7 \) - Second row, first column: \( 4 \times 4 + 3 \times 1 = 16 + 3 = 19 \) - Second row, second column: \( 4 \times 3 + 3 \times 2 = 12 + 6 = 18 \) Thus, \[ BC = \begin{pmatrix} 6 & 7 \\ 19 & 18 \end{pmatrix} \] ### Step 4: Calculate \( A(BC) \) Now, we will multiply \( A \) with \( BC \): \[ A(BC) = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 6 & 7 \\ 19 & 18 \end{pmatrix} \] Calculating each element: - First row, first column: \( 1 \times 6 + 3 \times 19 = 6 + 57 = 63 \) - First row, second column: \( 1 \times 7 + 3 \times 18 = 7 + 54 = 61 \) - Second row, first column: \( 2 \times 6 + 4 \times 19 = 12 + 76 = 88 \) - Second row, second column: \( 2 \times 7 + 4 \times 18 = 14 + 72 = 86 \) Thus, \[ A(BC) = \begin{pmatrix} 63 & 61 \\ 88 & 86 \end{pmatrix} \] ### Conclusion Now we compare \( (AB)C \) and \( A(BC) \): \[ (AB)C = \begin{pmatrix} 63 & 61 \\ 88 & 86 \end{pmatrix} \] \[ A(BC) = \begin{pmatrix} 63 & 61 \\ 88 & 86 \end{pmatrix} \] Since both results are equal, we conclude that: \[ A(BC) = (AB)C \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,6):}] Find AB-5C.

If A=[{:(,1,4),(,2,1):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2):}] simplify : A^2+BC .

If A=[{:(,5,4),(,3,-1):}], B=[{:(,2,1),(,0,4):}] and C=[{:(,-3,2),(,1,0):}] , find : (i) A+C (ii) B-A (iii) A+B-C

Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(,1,-1):}] . Find A^2-A+BC .

If A = [{:(1,2),(-2,3):}], B= [{:(2,1),(2,3):}] and C = [{:(-3,1),(2,0):}] ,verify that (AB)C = A(BC) and A(B+C)=AB+AC.

If A=[{:(1,2),(-2,1):}],B=[{:(2,3),(3,-4):}] and C=[{:(1,0),(-1,0):}] , verfity (i) A(B+C)=AB+AC.

If A=[{:(,2,-1),(,3,4):}]=B=[{:(,5,2),(,7,4):}],C=[{:(,2,5),(,3,8):}] and AB-CD=0 find D.

If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2):}] then show that (i) A(B+C)=AB+AC (ii) (B-A)C=BC-AC .

If A=[{:(2, 1,),(4,2,)],B =[{:(2,3,4),(1,4,0):}] and C=[{:(-1,2,1),(1,0,2):}] then veri fy that A(B+C)=(AB+AC) .

if A=[(1,2),(3,4):}],B=[{:(-1,0),(2,3):}]and C=[{:(1,-1),(0,1):}], then show that : (i) A(B+C)=AB+AC (ii) (A-B)C=AC-BC.

ICSE-MATRICES-Exercise 9C
  1. If A=[{:(,3,x),(,0,1):}] and B=[{:(,9,16),(,0,-y):}] find x and y when...

    Text Solution

    |

  2. Find x and y, if : (i) [{:(,4,3x),(,x,-2):}] [{:(,5),(,1):}]=[{:(,y,...

    Text Solution

    |

  3. If A=[{:(,1,3),(,2,4):}], B=[{:(,1,2),(,4,3):}] and C=[{:(,4,3),(,1,2)...

    Text Solution

    |

  4. Given A=[{:(,0,4,6),(,3,0,-1):}] and B=[{:(,0,1),(,-1,2),(,-5,-6):}], ...

    Text Solution

    |

  5. Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(...

    Text Solution

    |

  6. If M=[{:(,1,2),(,2,1):}] and I is a unit matrix of the same order as t...

    Text Solution

    |

  7. If A=[{:(,a,0),(,0,2):}], B=[{:(,0,-b),(,1,0):}], M=[{:(,1,-1),(,1,1):...

    Text Solution

    |

  8. Given A=[{:(,4,1),(,2,3):}] and B=[{:(,1,0),(,-2,01):}], Find (i) A-...

    Text Solution

    |

  9. If A=[{:(,1,4),(,1,-3):}] and B=[{:(,1,2),(,-1,-1):}], find: (A+B)...

    Text Solution

    |

  10. Find the matrix A, if B=[{:(,2,1),(,0,1):}] and B^2=B+1/2A.

    Text Solution

    |

  11. If A=[{:(,-1,1),(,a,b):}] and A^2=I, find a and b.

    Text Solution

    |

  12. If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2)...

    Text Solution

    |

  13. If A=[{:(,1,4),(,2,1):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2...

    Text Solution

    |

  14. Solve for x and y (i) [{:(,2,5),(,5,2):}] [{:(,x),(,y):}]=[{:(,-7),(...

    Text Solution

    |

  15. In each case given below, find : the order of matrix M, (i) M ...

    Text Solution

    |

  16. If A=[{:(,2,x),(,0,1):}] and B=[{:(,4,36),(,0,1):}], find the value of...

    Text Solution

    |

  17. If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,...

    Text Solution

    |

  18. If A and B are any two 2 xx 2 matrices such that AB=BA=B and B is not ...

    Text Solution

    |

  19. Given A=[{:(,3,0),(,0,4):}], B=[{:(,a,b),(,0,c):}] and AB=A+B, find t...

    Text Solution

    |

  20. If P=[{:(,1,2),(,2,-1):}] and Q=[{:(,1,0),(,2,1):}] then compute : (...

    Text Solution

    |