Home
Class 10
MATHS
Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),...

Let `A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(,-1,4):}]`. Find `A^2+AC-5B`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \( A^2 + AC - 5B \) using the given matrices: \[ A = \begin{pmatrix} 2 & 1 \\ 0 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 1 \\ -3 & -2 \end{pmatrix}, \quad C = \begin{pmatrix} -3 & 2 \\ -1 & 4 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 2 & 1 \\ 0 & -2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 0 & -2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2 \cdot 2 + 1 \cdot 0 = 4 \) - First row, second column: \( 2 \cdot 1 + 1 \cdot (-2) = 2 - 2 = 0 \) - Second row, first column: \( 0 \cdot 2 + (-2) \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot 1 + (-2) \cdot (-2) = 0 + 4 = 4 \) Thus, \[ A^2 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \] ### Step 2: Calculate \( AC \) Next, we calculate \( AC \): \[ AC = A \cdot C = \begin{pmatrix} 2 & 1 \\ 0 & -2 \end{pmatrix} \cdot \begin{pmatrix} -3 & 2 \\ -1 & 4 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2 \cdot (-3) + 1 \cdot (-1) = -6 - 1 = -7 \) - First row, second column: \( 2 \cdot 2 + 1 \cdot 4 = 4 + 4 = 8 \) - Second row, first column: \( 0 \cdot (-3) + (-2) \cdot (-1) = 0 + 2 = 2 \) - Second row, second column: \( 0 \cdot 2 + (-2) \cdot 4 = 0 - 8 = -8 \) Thus, \[ AC = \begin{pmatrix} -7 & 8 \\ 2 & -8 \end{pmatrix} \] ### Step 3: Calculate \( 5B \) Now, we calculate \( 5B \): \[ 5B = 5 \cdot \begin{pmatrix} 4 & 1 \\ -3 & -2 \end{pmatrix} = \begin{pmatrix} 20 & 5 \\ -15 & -10 \end{pmatrix} \] ### Step 4: Combine the results to find \( A^2 + AC - 5B \) Now we substitute the values we found into the expression \( A^2 + AC - 5B \): \[ A^2 + AC - 5B = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} + \begin{pmatrix} -7 & 8 \\ 2 & -8 \end{pmatrix} - \begin{pmatrix} 20 & 5 \\ -15 & -10 \end{pmatrix} \] Calculating the sum and subtraction element-wise: 1. First element: \( 4 - 7 - 20 = 4 - 27 = -23 \) 2. Second element: \( 0 + 8 - 5 = 3 \) 3. Third element: \( 0 + 2 + 15 = 17 \) 4. Fourth element: \( 4 - 8 + 10 = 6 \) Thus, the final result is: \[ A^2 + AC - 5B = \begin{pmatrix} -23 & 3 \\ 17 & 6 \end{pmatrix} \] ### Final Answer: \[ A^2 + AC - 5B = \begin{pmatrix} -23 & 3 \\ 17 & 6 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(,1,-1):}] . Find A^2-A+BC .

If A=[{:(,5,4),(,3,-1):}], B=[{:(,2,1),(,0,4):}] and C=[{:(,-3,2),(,1,0):}] , find : (i) A+C (ii) B-A (iii) A+B-C

Let A=[{:(,5,4),(,3,-2):}], B=[{:(,-3,0),(,1,4):}] and C=[{:(,1,-3),(,0,2):}], find : (i) A+B and B+A (ii) (A+B)+C and A+(B+C) (iii) Is A+B=B+A? (iv) Is (A+B) +C=A+(B+C)?

Given A=[{:(,2,1),(,3,0):}], B=[(1,1),(5,2)] and C=[{:(,-3,-1),(,0,0):}] , find (i) 2A-3B+C (ii) A+2C-B

Given A=[{:(,3,-2),(,-1,4):}], B=[{:(,6),(,1):}], C=[{:(,-4),(,-5):}] and D=[{:(,2),(,2):}] . Find AB+2C-4D

If A={:[(2,1),(-3,2)]:},B={:[(4,1),(-3,2)]:} Find 2A+3B.

Let A+B+C= [{:(,4,-1),(,0,1):}],4A+2B+C=[{:(,0,-1),(,-3,2):}]and 9A+3B+C=[{:(,0,2),(,2,1):}]"then find A"

Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}] . Find A^2+AB+B^2

If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2):}] then show that (i) A(B+C)=AB+AC (ii) (B-A)C=BC-AC .

If A=[{:(1,2),(-2,1):}],B=[{:(2,3),(3,-4):}] and C=[{:(1,0),(-1,0):}] , verfity (i) A(B+C)=AB+AC.

ICSE-MATRICES-Exercise 9C
  1. If A=[{:(,1,3),(,2,4):}], B=[{:(,1,2),(,4,3):}] and C=[{:(,4,3),(,1,2)...

    Text Solution

    |

  2. Given A=[{:(,0,4,6),(,3,0,-1):}] and B=[{:(,0,1),(,-1,2),(,-5,-6):}], ...

    Text Solution

    |

  3. Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(...

    Text Solution

    |

  4. If M=[{:(,1,2),(,2,1):}] and I is a unit matrix of the same order as t...

    Text Solution

    |

  5. If A=[{:(,a,0),(,0,2):}], B=[{:(,0,-b),(,1,0):}], M=[{:(,1,-1),(,1,1):...

    Text Solution

    |

  6. Given A=[{:(,4,1),(,2,3):}] and B=[{:(,1,0),(,-2,01):}], Find (i) A-...

    Text Solution

    |

  7. If A=[{:(,1,4),(,1,-3):}] and B=[{:(,1,2),(,-1,-1):}], find: (A+B)...

    Text Solution

    |

  8. Find the matrix A, if B=[{:(,2,1),(,0,1):}] and B^2=B+1/2A.

    Text Solution

    |

  9. If A=[{:(,-1,1),(,a,b):}] and A^2=I, find a and b.

    Text Solution

    |

  10. If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2)...

    Text Solution

    |

  11. If A=[{:(,1,4),(,2,1):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2...

    Text Solution

    |

  12. Solve for x and y (i) [{:(,2,5),(,5,2):}] [{:(,x),(,y):}]=[{:(,-7),(...

    Text Solution

    |

  13. In each case given below, find : the order of matrix M, (i) M ...

    Text Solution

    |

  14. If A=[{:(,2,x),(,0,1):}] and B=[{:(,4,36),(,0,1):}], find the value of...

    Text Solution

    |

  15. If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,...

    Text Solution

    |

  16. If A and B are any two 2 xx 2 matrices such that AB=BA=B and B is not ...

    Text Solution

    |

  17. Given A=[{:(,3,0),(,0,4):}], B=[{:(,a,b),(,0,c):}] and AB=A+B, find t...

    Text Solution

    |

  18. If P=[{:(,1,2),(,2,-1):}] and Q=[{:(,1,0),(,2,1):}] then compute : (...

    Text Solution

    |

  19. Give the matrices : A=[{:(,2,1),(,4,2):}], B=[{:(,3,4),(,-1,-2):}] a...

    Text Solution

    |

  20. If A=[{:(,1,2),(,3,4):}], B=[{:(,6,1),(,1,1):}] and C=[{:(,-2,-3),(,0,...

    Text Solution

    |