Home
Class 10
MATHS
Find the matrix A, if B=[{:(,2,1),(,0,1)...

Find the matrix A, if `B=[{:(,2,1),(,0,1):}] and B^2=B+1/2A`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( A \) given the matrix \( B \) and the equation \( B^2 = B + \frac{1}{2} A \), we will follow these steps: ### Step 1: Write down the matrix \( B \) The matrix \( B \) is given as: \[ B = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \] ### Step 2: Calculate \( B^2 \) To find \( B^2 \), we multiply matrix \( B \) by itself: \[ B^2 = B \times B = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \] Using the matrix multiplication rules: - First row, first column: \( 2 \times 2 + 1 \times 0 = 4 \) - First row, second column: \( 2 \times 1 + 1 \times 1 = 2 + 1 = 3 \) - Second row, first column: \( 0 \times 2 + 1 \times 0 = 0 \) - Second row, second column: \( 0 \times 1 + 1 \times 1 = 0 + 1 = 1 \) Thus, we have: \[ B^2 = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix} \] ### Step 3: Substitute \( B^2 \) into the equation We substitute \( B^2 \) into the equation \( B^2 = B + \frac{1}{2} A \): \[ \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} + \frac{1}{2} A \] ### Step 4: Rearrange the equation to solve for \( A \) Rearranging gives us: \[ \frac{1}{2} A = B^2 - B \] Thus, \[ A = 2(B^2 - B) \] ### Step 5: Calculate \( B^2 - B \) Now we calculate \( B^2 - B \): \[ B^2 - B = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 4 - 2 = 2 \) - First row, second column: \( 3 - 1 = 2 \) - Second row, first column: \( 0 - 0 = 0 \) - Second row, second column: \( 1 - 1 = 0 \) Thus, \[ B^2 - B = \begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix} \] ### Step 6: Multiply by 2 to find \( A \) Now we multiply the result by 2: \[ A = 2 \times \begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 4 \\ 0 & 0 \end{pmatrix} \] ### Final Answer The matrix \( A \) is: \[ A = \begin{pmatrix} 4 & 4 \\ 0 & 0 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

(i) if A+B=[{:(3,4),(-1,0):}]and A-B =[{:(1,2),(5,6):}], then find the matrix A and B. (ii) if X+Y=[{:(2,1),(1,2):}]and 2X-Y=[{:(1,2),(2,1):}] then find X and Y .

Find the value of x, given that: A^2=B, A=[{:(,2,12),(,0,1):}] and B=[{:(,4,x),(,0,1):}]

For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0 . Hence find A^(-1)

Given the matrices A and B as A=[(1,-1),(4,-1)] and B=[(1,-1),(2,-2)] . The two matrices X and Y are such that XA=B and AY=B , then find the matrix 3(X+Y)

If A is square matrix of order 2xx2 such that A^(2)=I,B=[{:(1,sqrt(2)),(0,1):}] and C=ABA then

Find matrix B, if matrix A= [(1,5),(1,2)] , matrix C= [(2),(1)] and AB= 3C

Find the inverse of the matrix A=[(a, b),( c,(1+b c)/a)] and show that a A^(-1)=(a^2+b c+1)I-a A .

Given matrix A=[{:(,5),(,-3):}] and matrix B=[{:(,-1),(,7):}] find matrix X such that : A+2X=B.

Given A=[{:(,1,4),(,2,3):}] and B=[{:(,-4,-1),(,-3,-2):}] (i) find the matrix 2A+B. (ii) find a matrix C such that : C+B=[{:(,0,0),(,0,0):}]

If A=[{:(,1,3),(,3,4):}], B=[{:(,-2,1),(,-3,2):}] and A^2-5B^2=5C . find matrix C where C is a 2 by 2 matrix.

ICSE-MATRICES-Exercise 9C
  1. Given A=[{:(,4,1),(,2,3):}] and B=[{:(,1,0),(,-2,01):}], Find (i) A-...

    Text Solution

    |

  2. If A=[{:(,1,4),(,1,-3):}] and B=[{:(,1,2),(,-1,-1):}], find: (A+B)...

    Text Solution

    |

  3. Find the matrix A, if B=[{:(,2,1),(,0,1):}] and B^2=B+1/2A.

    Text Solution

    |

  4. If A=[{:(,-1,1),(,a,b):}] and A^2=I, find a and b.

    Text Solution

    |

  5. If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2)...

    Text Solution

    |

  6. If A=[{:(,1,4),(,2,1):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2...

    Text Solution

    |

  7. Solve for x and y (i) [{:(,2,5),(,5,2):}] [{:(,x),(,y):}]=[{:(,-7),(...

    Text Solution

    |

  8. In each case given below, find : the order of matrix M, (i) M ...

    Text Solution

    |

  9. If A=[{:(,2,x),(,0,1):}] and B=[{:(,4,36),(,0,1):}], find the value of...

    Text Solution

    |

  10. If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,...

    Text Solution

    |

  11. If A and B are any two 2 xx 2 matrices such that AB=BA=B and B is not ...

    Text Solution

    |

  12. Given A=[{:(,3,0),(,0,4):}], B=[{:(,a,b),(,0,c):}] and AB=A+B, find t...

    Text Solution

    |

  13. If P=[{:(,1,2),(,2,-1):}] and Q=[{:(,1,0),(,2,1):}] then compute : (...

    Text Solution

    |

  14. Give the matrices : A=[{:(,2,1),(,4,2):}], B=[{:(,3,4),(,-1,-2):}] a...

    Text Solution

    |

  15. If A=[{:(,1,2),(,3,4):}], B=[{:(,6,1),(,1,1):}] and C=[{:(,-2,-3),(,0,...

    Text Solution

    |

  16. If A=[{:(,2,1),(,1,3):}] and B=[ {: (, 3),(,-11 ):}] . find the mat...

    Text Solution

    |

  17. If A=[{:(,4,2),(,1,1):}], find (A-2I) (A-3I).

    Text Solution

    |

  18. If A=[{:(,2,1,-1),(,0,1,-2):}] find: (i) A^(t).A (ii) A.A^(t) wher...

    Text Solution

    |

  19. If M=[{:(,4,1),(,-1,2):}] show that 6M-M^2=9I, where I is a 2 xx 2 uni...

    Text Solution

    |

  20. If P=[{:(,2,6),(,3,9):}] and Q=[{:(,3,x),(,y,2):}]. find x and y such ...

    Text Solution

    |