Home
Class 10
MATHS
If A=[{:(,-1,1),(,a,b):}] and A^2=I, fin...

If `A=[{:(,-1,1),(,a,b):}] and A^2=I`, find a and b.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \) and \( b \) in the matrix \( A \) given that \( A^2 = I \), where \( I \) is the identity matrix. The matrix \( A \) is given as: \[ A = \begin{pmatrix} -1 & 1 \\ a & b \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} -1 & 1 \\ a & b \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 \\ a & b \end{pmatrix} \] ### Step 2: Perform the matrix multiplication Now, we will perform the multiplication: - First row, first column: \[ (-1)(-1) + (1)(a) = 1 + a \] - First row, second column: \[ (-1)(1) + (1)(b) = -1 + b \] - Second row, first column: \[ (a)(-1) + (b)(a) = -a + ab \] - Second row, second column: \[ (a)(1) + (b)(b) = a + b^2 \] So, we have: \[ A^2 = \begin{pmatrix} 1 + a & -1 + b \\ -a + ab & a + b^2 \end{pmatrix} \] ### Step 3: Set \( A^2 \) equal to the identity matrix \( I \) The identity matrix \( I \) for a 2x2 matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Setting \( A^2 \) equal to \( I \): \[ \begin{pmatrix} 1 + a & -1 + b \\ -a + ab & a + b^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 4: Equate corresponding elements From the equality of the matrices, we can set up the following equations: 1. \( 1 + a = 1 \) 2. \( -1 + b = 0 \) 3. \( -a + ab = 0 \) 4. \( a + b^2 = 1 \) ### Step 5: Solve the equations **From equation 1:** \[ 1 + a = 1 \implies a = 0 \] **From equation 2:** \[ -1 + b = 0 \implies b = 1 \] **Substituting \( a = 0 \) and \( b = 1 \) into equations 3 and 4:** **Equation 3:** \[ -a + ab = 0 \implies -0 + 0 \cdot 1 = 0 \quad \text{(True)} \] **Equation 4:** \[ a + b^2 = 1 \implies 0 + 1^2 = 1 \quad \text{(True)} \] ### Conclusion The values of \( a \) and \( b \) are: \[ a = 0, \quad b = 1 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,a,0),(,0,2):}], B=[{:(,0,-b),(,1,0):}], M=[{:(,1,-1),(,1,1):}] and BA=M^2 , find the values of a and b.

Find the matrix A, if B=[{:(,2,1),(,0,1):}] and B^2=B+1/2A .

If A=[{:(,1,2),(,2,1):}] and B=[{:(,2,1),(,1,2):}] find : (i) A(BA) (ii) (AB) B.

(i) if A+B=[{:(3,4),(-1,0):}]and A-B =[{:(1,2),(5,6):}], then find the matrix A and B. (ii) if X+Y=[{:(2,1),(1,2):}]and 2X-Y=[{:(1,2),(2,1):}] then find X and Y .

if 2A +B=[{:(5,-1),(3,2):}]and A-2B =[{:(1,-4),(0,5):}] then find the matrices A and B .

If A=[{:(1,-1),(2,-1):}],B=[{:(a,-1),(b,-1):}]" and "(A+B)^(2)=(A^(2)+B^(2)) then find the values of a and b.

Given A=[{:(,2,1),(,3,0):}], B=[(1,1),(5,2)] and C=[{:(,-3,-1),(,0,0):}] , find (i) 2A-3B+C (ii) A+2C-B

If A=[(1,-1),(2,-1)],B = [(x,1),(4,-1)] and A^2+B^2=(A+B)^2 find the value of x. State, whether A^2 + B^2 and (A + B)^2 are always equal or not.

Matrices A and B Satisfy AB = B^(-1) , where B =[{:(2,-2),(-1,0):}] , find the value of lambda for which lambdaA - 2B^(-1) + 1=O , Without finding B^(-1) .

ICSE-MATRICES-Exercise 9C
  1. If A=[{:(,1,4),(,1,-3):}] and B=[{:(,1,2),(,-1,-1):}], find: (A+B)...

    Text Solution

    |

  2. Find the matrix A, if B=[{:(,2,1),(,0,1):}] and B^2=B+1/2A.

    Text Solution

    |

  3. If A=[{:(,-1,1),(,a,b):}] and A^2=I, find a and b.

    Text Solution

    |

  4. If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2)...

    Text Solution

    |

  5. If A=[{:(,1,4),(,2,1):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2...

    Text Solution

    |

  6. Solve for x and y (i) [{:(,2,5),(,5,2):}] [{:(,x),(,y):}]=[{:(,-7),(...

    Text Solution

    |

  7. In each case given below, find : the order of matrix M, (i) M ...

    Text Solution

    |

  8. If A=[{:(,2,x),(,0,1):}] and B=[{:(,4,36),(,0,1):}], find the value of...

    Text Solution

    |

  9. If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,...

    Text Solution

    |

  10. If A and B are any two 2 xx 2 matrices such that AB=BA=B and B is not ...

    Text Solution

    |

  11. Given A=[{:(,3,0),(,0,4):}], B=[{:(,a,b),(,0,c):}] and AB=A+B, find t...

    Text Solution

    |

  12. If P=[{:(,1,2),(,2,-1):}] and Q=[{:(,1,0),(,2,1):}] then compute : (...

    Text Solution

    |

  13. Give the matrices : A=[{:(,2,1),(,4,2):}], B=[{:(,3,4),(,-1,-2):}] a...

    Text Solution

    |

  14. If A=[{:(,1,2),(,3,4):}], B=[{:(,6,1),(,1,1):}] and C=[{:(,-2,-3),(,0,...

    Text Solution

    |

  15. If A=[{:(,2,1),(,1,3):}] and B=[ {: (, 3),(,-11 ):}] . find the mat...

    Text Solution

    |

  16. If A=[{:(,4,2),(,1,1):}], find (A-2I) (A-3I).

    Text Solution

    |

  17. If A=[{:(,2,1,-1),(,0,1,-2):}] find: (i) A^(t).A (ii) A.A^(t) wher...

    Text Solution

    |

  18. If M=[{:(,4,1),(,-1,2):}] show that 6M-M^2=9I, where I is a 2 xx 2 uni...

    Text Solution

    |

  19. If P=[{:(,2,6),(,3,9):}] and Q=[{:(,3,x),(,y,2):}]. find x and y such ...

    Text Solution

    |

  20. Evalutate: [{:(,2cos 60^@, -2sin 30^@),(,-tan 45^@,cos 0^@):}] [{:(,...

    Text Solution

    |