Home
Class 10
MATHS
If A=[{:(,1,4),(,2,1):}], B=[{:(,-3,2),(...

If `A=[{:(,1,4),(,2,1):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2):}]` simplify : `A^2+BC`.

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( A^2 + BC \) where \[ A = \begin{pmatrix} 1 & 4 \\ 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & 2 \\ 4 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \] we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 1 & 4 \\ 2 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 4 \\ 2 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \[ 1 \cdot 1 + 4 \cdot 2 = 1 + 8 = 9 \] - First row, second column: \[ 1 \cdot 4 + 4 \cdot 1 = 4 + 4 = 8 \] - Second row, first column: \[ 2 \cdot 1 + 1 \cdot 2 = 2 + 2 = 4 \] - Second row, second column: \[ 2 \cdot 4 + 1 \cdot 1 = 8 + 1 = 9 \] Thus, \[ A^2 = \begin{pmatrix} 9 & 8 \\ 4 & 9 \end{pmatrix} \] ### Step 2: Calculate \( BC \) Next, we calculate the product \( BC \): \[ BC = B \times C = \begin{pmatrix} -3 & 2 \\ 4 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \] Calculating the elements: - First row, first column: \[ -3 \cdot 1 + 2 \cdot 0 = -3 + 0 = -3 \] - First row, second column: \[ -3 \cdot 0 + 2 \cdot 2 = 0 + 4 = 4 \] - Second row, first column: \[ 4 \cdot 1 + 0 \cdot 0 = 4 + 0 = 4 \] - Second row, second column: \[ 4 \cdot 0 + 0 \cdot 2 = 0 + 0 = 0 \] Thus, \[ BC = \begin{pmatrix} -3 & 4 \\ 4 & 0 \end{pmatrix} \] ### Step 3: Calculate \( A^2 + BC \) Now we add the matrices \( A^2 \) and \( BC \): \[ A^2 + BC = \begin{pmatrix} 9 & 8 \\ 4 & 9 \end{pmatrix} + \begin{pmatrix} -3 & 4 \\ 4 & 0 \end{pmatrix} \] Calculating the elements: - First row, first column: \[ 9 + (-3) = 6 \] - First row, second column: \[ 8 + 4 = 12 \] - Second row, first column: \[ 4 + 4 = 8 \] - Second row, second column: \[ 9 + 0 = 9 \] Thus, \[ A^2 + BC = \begin{pmatrix} 6 & 12 \\ 8 & 9 \end{pmatrix} \] ### Final Answer: \[ A^2 + BC = \begin{pmatrix} 6 & 12 \\ 8 & 9 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2):}] , Find the matrix X such that A+X=2B+C.

If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2):}] then show that (i) A(B+C)=AB+AC (ii) (B-A)C=BC-AC .

If A=[{:(1,2),(-2,1):}],B=[{:(2,3),(3,-4):}] and C=[{:(1,0),(-1,0):}] , verfity (i) A(B+C)=AB+AC.

If A=[{:(2, 1,),(4,2,)],B =[{:(2,3,4),(1,4,0):}] and C=[{:(-1,2,1),(1,0,2):}] then veri fy that A(B+C)=(AB+AC) .

Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(,1,-1):}] . Find A^2-A+BC .

If A=[{:(,5,4),(,3,-1):}], B=[{:(,2,1),(,0,4):}] and C=[{:(,-3,2),(,1,0):}] , find : (i) A+C (ii) B-A (iii) A+B-C

If A[{:(3,-4),(1,1),(2,0):}] and B=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}]

Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(,-1,4):}] . Find A^2+AC-5B .

If A = [{:(0,4),(1,0):}], B = [{:( -2,0),(3,-2) :} ] and C = [ {:( -1,-2),(2,0) :}] show that : (B- C ) A = BA - CA

if A=[{:(2,-3),(1,4):}],B=[{:(-1,0),(1,2):}], C=[{:(3,1),(1,2):}] , then show that A (BC)=(AB)c.

ICSE-MATRICES-Exercise 9C
  1. If A=[{:(,-1,1),(,a,b):}] and A^2=I, find a and b.

    Text Solution

    |

  2. If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2)...

    Text Solution

    |

  3. If A=[{:(,1,4),(,2,1):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2...

    Text Solution

    |

  4. Solve for x and y (i) [{:(,2,5),(,5,2):}] [{:(,x),(,y):}]=[{:(,-7),(...

    Text Solution

    |

  5. In each case given below, find : the order of matrix M, (i) M ...

    Text Solution

    |

  6. If A=[{:(,2,x),(,0,1):}] and B=[{:(,4,36),(,0,1):}], find the value of...

    Text Solution

    |

  7. If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,...

    Text Solution

    |

  8. If A and B are any two 2 xx 2 matrices such that AB=BA=B and B is not ...

    Text Solution

    |

  9. Given A=[{:(,3,0),(,0,4):}], B=[{:(,a,b),(,0,c):}] and AB=A+B, find t...

    Text Solution

    |

  10. If P=[{:(,1,2),(,2,-1):}] and Q=[{:(,1,0),(,2,1):}] then compute : (...

    Text Solution

    |

  11. Give the matrices : A=[{:(,2,1),(,4,2):}], B=[{:(,3,4),(,-1,-2):}] a...

    Text Solution

    |

  12. If A=[{:(,1,2),(,3,4):}], B=[{:(,6,1),(,1,1):}] and C=[{:(,-2,-3),(,0,...

    Text Solution

    |

  13. If A=[{:(,2,1),(,1,3):}] and B=[ {: (, 3),(,-11 ):}] . find the mat...

    Text Solution

    |

  14. If A=[{:(,4,2),(,1,1):}], find (A-2I) (A-3I).

    Text Solution

    |

  15. If A=[{:(,2,1,-1),(,0,1,-2):}] find: (i) A^(t).A (ii) A.A^(t) wher...

    Text Solution

    |

  16. If M=[{:(,4,1),(,-1,2):}] show that 6M-M^2=9I, where I is a 2 xx 2 uni...

    Text Solution

    |

  17. If P=[{:(,2,6),(,3,9):}] and Q=[{:(,3,x),(,y,2):}]. find x and y such ...

    Text Solution

    |

  18. Evalutate: [{:(,2cos 60^@, -2sin 30^@),(,-tan 45^@,cos 0^@):}] [{:(,...

    Text Solution

    |

  19. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  20. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |