Home
Class 10
MATHS
Given A=[{:(,3,0),(,0,4):}], B=[{:(,a,b)...

Given `A=[{:(,3,0),(,0,4):}], B=[{:(,a,b),(,0,c):}]` and AB=A+B, find the values of a,b and c.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \), \( b \), and \( c \) given the matrices \( A \) and \( B \) and the equation \( AB = A + B \). Given: - \( A = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix} \) - \( B = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \) We need to compute \( AB \) and set it equal to \( A + B \). ### Step 1: Calculate \( AB \) To find \( AB \), we multiply matrix \( A \) by matrix \( B \): \[ AB = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \] Calculating each element of the resulting matrix: - First row, first column: \[ 3 \cdot a + 0 \cdot 0 = 3a \] - First row, second column: \[ 3 \cdot b + 0 \cdot c = 3b \] - Second row, first column: \[ 0 \cdot a + 4 \cdot 0 = 0 \] - Second row, second column: \[ 0 \cdot b + 4 \cdot c = 4c \] Thus, we have: \[ AB = \begin{pmatrix} 3a & 3b \\ 0 & 4c \end{pmatrix} \] ### Step 2: Calculate \( A + B \) Now, we calculate \( A + B \): \[ A + B = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix} + \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \] Adding the corresponding elements gives us: \[ A + B = \begin{pmatrix} 3 + a & 0 + b \\ 0 + 0 & 4 + c \end{pmatrix} = \begin{pmatrix} 3 + a & b \\ 0 & 4 + c \end{pmatrix} \] ### Step 3: Set \( AB = A + B \) Now we set the two results equal to each other: \[ \begin{pmatrix} 3a & 3b \\ 0 & 4c \end{pmatrix} = \begin{pmatrix} 3 + a & b \\ 0 & 4 + c \end{pmatrix} \] ### Step 4: Equate corresponding elements From the equality of matrices, we can derive the following equations: 1. \( 3a = 3 + a \) 2. \( 3b = b \) 3. \( 0 = 0 \) (which is always true) 4. \( 4c = 4 + c \) ### Step 5: Solve for \( a \) From the first equation: \[ 3a - a = 3 \implies 2a = 3 \implies a = \frac{3}{2} \] ### Step 6: Solve for \( b \) From the second equation: \[ 3b - b = 0 \implies 2b = 0 \implies b = 0 \] ### Step 7: Solve for \( c \) From the fourth equation: \[ 4c - c = 4 \implies 3c = 4 \implies c = \frac{4}{3} \] ### Final Values Thus, the values are: - \( a = \frac{3}{2} \) - \( b = 0 \) - \( c = \frac{4}{3} \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,3,a),(,-4,8):}], B=[{:(,c,4),(,-3,0):}] , C=[{:(,-1,4),(,3,b):}] and 3A-2C=6B. Find the values of a,b and c.

Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2):}] , Find the matrix X such that A+X=2B+C.

Given A=[{:(,1,4),(,2,3):}] and B=[{:(,-4,-1),(,-3,-2):}] (i) find the matrix 2A+B. (ii) find a matrix C such that : C+B=[{:(,0,0),(,0,0):}]

Given A=[{:(,2,-6),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,4,0),(,0,2):}] . Find the matrix X such that A+2X=2B+C.

A=[(a,1,0),(1,b,d),(1,b,c)] then find the value of |A|

If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is skew-symmetric matrix, then find the values of a,b and c,

Let A=[{:(,5,4),(,3,-2):}], B=[{:(,-3,0),(,1,4):}] and C=[{:(,1,-3),(,0,2):}], find : (i) A+B and B+A (ii) (A+B)+C and A+(B+C) (iii) Is A+B=B+A? (iv) Is (A+B) +C=A+(B+C)?

If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2):}] then show that (i) A(B+C)=AB+AC (ii) (B-A)C=BC-AC .

If A=[{:(,5,4),(,3,-1):}], B=[{:(,2,1),(,0,4):}] and C=[{:(,-3,2),(,1,0):}] , find : (i) A+C (ii) B-A (iii) A+B-C

Let A=[{:(-3,-7,-5),(2,4,3),(1,2,2):}] and B=[{:(a),(b),(1):}] If AB is a scalar multiple of B, then (a) 4a+7b+5=0 (b) a+b+2=0 (c) b-a=4 (d) a+3b=0

ICSE-MATRICES-Exercise 9C
  1. If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,...

    Text Solution

    |

  2. If A and B are any two 2 xx 2 matrices such that AB=BA=B and B is not ...

    Text Solution

    |

  3. Given A=[{:(,3,0),(,0,4):}], B=[{:(,a,b),(,0,c):}] and AB=A+B, find t...

    Text Solution

    |

  4. If P=[{:(,1,2),(,2,-1):}] and Q=[{:(,1,0),(,2,1):}] then compute : (...

    Text Solution

    |

  5. Give the matrices : A=[{:(,2,1),(,4,2):}], B=[{:(,3,4),(,-1,-2):}] a...

    Text Solution

    |

  6. If A=[{:(,1,2),(,3,4):}], B=[{:(,6,1),(,1,1):}] and C=[{:(,-2,-3),(,0,...

    Text Solution

    |

  7. If A=[{:(,2,1),(,1,3):}] and B=[ {: (, 3),(,-11 ):}] . find the mat...

    Text Solution

    |

  8. If A=[{:(,4,2),(,1,1):}], find (A-2I) (A-3I).

    Text Solution

    |

  9. If A=[{:(,2,1,-1),(,0,1,-2):}] find: (i) A^(t).A (ii) A.A^(t) wher...

    Text Solution

    |

  10. If M=[{:(,4,1),(,-1,2):}] show that 6M-M^2=9I, where I is a 2 xx 2 uni...

    Text Solution

    |

  11. If P=[{:(,2,6),(,3,9):}] and Q=[{:(,3,x),(,y,2):}]. find x and y such ...

    Text Solution

    |

  12. Evalutate: [{:(,2cos 60^@, -2sin 30^@),(,-tan 45^@,cos 0^@):}] [{:(,...

    Text Solution

    |

  13. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  14. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  15. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  16. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  17. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  18. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  19. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  20. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |