Home
Class 10
MATHS
If P=[{:(,1,2),(,2,-1):}] and Q=[{:(,1,0...

If `P=[{:(,1,2),(,2,-1):}] and Q=[{:(,1,0),(,2,1):}]` then compute :
(i) `P^2-Q^2` (ii) `(P+Q) (P-Q)`
Is (P+Q) (P-Q) `=P^2-Q^2` true for matrix algebra?

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the problem step by step. Given matrices: \[ P = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \] \[ Q = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \] ### Part (i): Compute \( P^2 - Q^2 \) **Step 1: Calculate \( P^2 \)** To find \( P^2 \), we multiply \( P \) by itself: \[ P^2 = P \times P = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \times 1 + 2 \times 2 = 1 + 4 = 5 \) - First row, second column: \( 1 \times 2 + 2 \times -1 = 2 - 2 = 0 \) - Second row, first column: \( 2 \times 1 + -1 \times 2 = 2 - 2 = 0 \) - Second row, second column: \( 2 \times 2 + -1 \times -1 = 4 + 1 = 5 \) Thus, \[ P^2 = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \] **Step 2: Calculate \( Q^2 \)** Now, we calculate \( Q^2 \): \[ Q^2 = Q \times Q = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \times 1 + 0 \times 2 = 1 + 0 = 1 \) - First row, second column: \( 1 \times 0 + 0 \times 1 = 0 + 0 = 0 \) - Second row, first column: \( 2 \times 1 + 1 \times 2 = 2 + 2 = 4 \) - Second row, second column: \( 2 \times 0 + 1 \times 1 = 0 + 1 = 1 \) Thus, \[ Q^2 = \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix} \] **Step 3: Compute \( P^2 - Q^2 \)** Now we subtract \( Q^2 \) from \( P^2 \): \[ P^2 - Q^2 = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 5 - 1 = 4 \) - First row, second column: \( 0 - 0 = 0 \) - Second row, first column: \( 0 - 4 = -4 \) - Second row, second column: \( 5 - 1 = 4 \) Thus, \[ P^2 - Q^2 = \begin{pmatrix} 4 & 0 \\ -4 & 4 \end{pmatrix} \] ### Part (ii): Compute \( (P + Q)(P - Q) \) **Step 1: Calculate \( P + Q \)** \[ P + Q = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 + 1 & 2 + 0 \\ 2 + 2 & -1 + 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 4 & 0 \end{pmatrix} \] **Step 2: Calculate \( P - Q \)** \[ P - Q = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 - 1 & 2 - 0 \\ 2 - 2 & -1 - 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & -2 \end{pmatrix} \] **Step 3: Compute \( (P + Q)(P - Q) \)** Now we multiply \( P + Q \) by \( P - Q \): \[ (P + Q)(P - Q) = \begin{pmatrix} 2 & 2 \\ 4 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 2 \\ 0 & -2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2 \times 0 + 2 \times 0 = 0 \) - First row, second column: \( 2 \times 2 + 2 \times -2 = 4 - 4 = 0 \) - Second row, first column: \( 4 \times 0 + 0 \times 0 = 0 \) - Second row, second column: \( 4 \times 2 + 0 \times -2 = 8 + 0 = 8 \) Thus, \[ (P + Q)(P - Q) = \begin{pmatrix} 0 & 0 \\ 0 & 8 \end{pmatrix} \] ### Conclusion: Verify if \( (P + Q)(P - Q) = P^2 - Q^2 \) We have: \[ P^2 - Q^2 = \begin{pmatrix} 4 & 0 \\ -4 & 4 \end{pmatrix} \] \[ (P + Q)(P - Q) = \begin{pmatrix} 0 & 0 \\ 0 & 8 \end{pmatrix} \] Since \( P^2 - Q^2 \neq (P + Q)(P - Q) \), the statement is **not true** for matrix algebra.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If P=[(lambda,0),(7,1)] and Q=[(4,0),(-7,1)] such that P^(2)=Q , then P^(3) is equal to

If p= q + 2 then p gt q .

If | (a+1,a+2, a+p), (a+2, a+3,a+q), (a+3,a+4,a+r)|=0,then p ,q ,r are in:

If adj B=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P A Q d. P A^1Q

For p, q in R , the roots of (p^(2) + 2)x^(2) + 2x(p +q) - 2 = 0 are

If adj B=A ,|P|=|Q|=1, then. adj(Q^(-1)B P^(-1)) is a. P Q b. Q A P c. P A Q d. P A^-1Q

if p: q :: r , prove that p : r = p^(2): q^(2) .

If p + q = 7 and pq = 12 , then will is the value of 1/(p^2) + 1/(q^2) ?

Show that the sequence (p + q)^(2), (p^(2) + q^(2)), (p-q)^(2) … is an A.P.

(a) If r^(2) = pq , show that p : q is the duplicate ratio of (p + r) : (q + r) . (b) If (p - x) : (q - x) be the duplicate ratio of p : q then show that : (1)/(p) + (1)/(q) = (1)/(r) .

ICSE-MATRICES-Exercise 9C
  1. If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,...

    Text Solution

    |

  2. If A and B are any two 2 xx 2 matrices such that AB=BA=B and B is not ...

    Text Solution

    |

  3. Given A=[{:(,3,0),(,0,4):}], B=[{:(,a,b),(,0,c):}] and AB=A+B, find t...

    Text Solution

    |

  4. If P=[{:(,1,2),(,2,-1):}] and Q=[{:(,1,0),(,2,1):}] then compute : (...

    Text Solution

    |

  5. Give the matrices : A=[{:(,2,1),(,4,2):}], B=[{:(,3,4),(,-1,-2):}] a...

    Text Solution

    |

  6. If A=[{:(,1,2),(,3,4):}], B=[{:(,6,1),(,1,1):}] and C=[{:(,-2,-3),(,0,...

    Text Solution

    |

  7. If A=[{:(,2,1),(,1,3):}] and B=[ {: (, 3),(,-11 ):}] . find the mat...

    Text Solution

    |

  8. If A=[{:(,4,2),(,1,1):}], find (A-2I) (A-3I).

    Text Solution

    |

  9. If A=[{:(,2,1,-1),(,0,1,-2):}] find: (i) A^(t).A (ii) A.A^(t) wher...

    Text Solution

    |

  10. If M=[{:(,4,1),(,-1,2):}] show that 6M-M^2=9I, where I is a 2 xx 2 uni...

    Text Solution

    |

  11. If P=[{:(,2,6),(,3,9):}] and Q=[{:(,3,x),(,y,2):}]. find x and y such ...

    Text Solution

    |

  12. Evalutate: [{:(,2cos 60^@, -2sin 30^@),(,-tan 45^@,cos 0^@):}] [{:(,...

    Text Solution

    |

  13. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  14. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  15. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  16. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  17. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  18. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  19. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  20. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |