Home
Class 10
MATHS
If A=[{:(,4,2),(,1,1):}], find (A-2I) (A...

If `A=[{:(,4,2),(,1,1):}]`, find `(A-2I) (A-3I)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \((A - 2I)(A - 3I)\) where the matrix \(A\) is given as: \[ A = \begin{pmatrix} 4 & 2 \\ 1 & 1 \end{pmatrix} \] ### Step 1: Find the Identity Matrix \(I\) Since \(A\) is a \(2 \times 2\) matrix, the identity matrix \(I\) will also be a \(2 \times 2\) matrix: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 2: Calculate \(2I\) and \(3I\) Now, we will calculate \(2I\) and \(3I\): \[ 2I = 2 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \] \[ 3I = 3 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] ### Step 3: Calculate \(A - 2I\) Now, we will subtract \(2I\) from \(A\): \[ A - 2I = \begin{pmatrix} 4 & 2 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 4 - 2 & 2 - 0 \\ 1 - 0 & 1 - 2 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 1 & -1 \end{pmatrix} \] ### Step 4: Calculate \(A - 3I\) Next, we will subtract \(3I\) from \(A\): \[ A - 3I = \begin{pmatrix} 4 & 2 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 4 - 3 & 2 - 0 \\ 1 - 0 & 1 - 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix} \] ### Step 5: Multiply \((A - 2I)(A - 3I)\) Now we will multiply the two resulting matrices: \[ (A - 2I)(A - 3I) = \begin{pmatrix} 2 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix} \] To calculate the product, we use the formula for matrix multiplication: \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix} \] Calculating each element: - First row, first column: \(2 \cdot 1 + 2 \cdot 1 = 2 + 2 = 4\) - First row, second column: \(2 \cdot 2 + 2 \cdot (-2) = 4 - 4 = 0\) - Second row, first column: \(1 \cdot 1 + (-1) \cdot 1 = 1 - 1 = 0\) - Second row, second column: \(1 \cdot 2 + (-1) \cdot (-2) = 2 + 2 = 4\) Thus, we have: \[ (A - 2I)(A - 3I) = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \] ### Step 6: Final Result The final result can be expressed as: \[ (A - 2I)(A - 3I) = 4I \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,2),(4,1):}] , then find A^(2)+2A+7I .

If A=[{:(3,-5),(-1,2):}] then find A^(2)-5A- 4I .

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

If A=[[4, 2],[-1, 1]] , prove that (A-2I)(A-3I)=O .

if A=[{:(3,-2),(7,1):}]and B=[{:(2,3),(-1,4):}], then find (i) A+B (ii) A-2B

If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}] ,find A^2-5A+7I .

if A=[{:(1+i,-2i),(7,3-i):}]and B=[{:(1-i,2i),(-3,3+i):}], then find A+B.

If A=[{:(,2,-1),(,-1, 3):}]" evaluate "A^2-3A+3I , where I is a unit matrix of order 2.

If (A -2I)(A-3I)=0 , when A=[{:(4,2),(-1,x):}] and I=[{:(1,0),(0,1):}] , find the value of x

ICSE-MATRICES-Exercise 9C
  1. If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,...

    Text Solution

    |

  2. If A and B are any two 2 xx 2 matrices such that AB=BA=B and B is not ...

    Text Solution

    |

  3. Given A=[{:(,3,0),(,0,4):}], B=[{:(,a,b),(,0,c):}] and AB=A+B, find t...

    Text Solution

    |

  4. If P=[{:(,1,2),(,2,-1):}] and Q=[{:(,1,0),(,2,1):}] then compute : (...

    Text Solution

    |

  5. Give the matrices : A=[{:(,2,1),(,4,2):}], B=[{:(,3,4),(,-1,-2):}] a...

    Text Solution

    |

  6. If A=[{:(,1,2),(,3,4):}], B=[{:(,6,1),(,1,1):}] and C=[{:(,-2,-3),(,0,...

    Text Solution

    |

  7. If A=[{:(,2,1),(,1,3):}] and B=[ {: (, 3),(,-11 ):}] . find the mat...

    Text Solution

    |

  8. If A=[{:(,4,2),(,1,1):}], find (A-2I) (A-3I).

    Text Solution

    |

  9. If A=[{:(,2,1,-1),(,0,1,-2):}] find: (i) A^(t).A (ii) A.A^(t) wher...

    Text Solution

    |

  10. If M=[{:(,4,1),(,-1,2):}] show that 6M-M^2=9I, where I is a 2 xx 2 uni...

    Text Solution

    |

  11. If P=[{:(,2,6),(,3,9):}] and Q=[{:(,3,x),(,y,2):}]. find x and y such ...

    Text Solution

    |

  12. Evalutate: [{:(,2cos 60^@, -2sin 30^@),(,-tan 45^@,cos 0^@):}] [{:(,...

    Text Solution

    |

  13. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  14. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  15. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  16. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  17. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  18. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  19. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  20. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |