Home
Class 10
MATHS
If A=[{:(,2,1,-1),(,0,1,-2):}] find: (...

If `A=[{:(,2,1,-1),(,0,1,-2):}]` find:
(i) `A^(t).A` (ii) `A.A^(t)`
where `A^t` is the transpose of matrix A.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( A^t \cdot A \) and \( A \cdot A^t \) where \( A \) is given as: \[ A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & -2 \end{pmatrix} \] ### Step 1: Find the transpose of matrix \( A \) The transpose of a matrix is obtained by swapping its rows and columns. Therefore, the transpose \( A^t \) will be: \[ A^t = \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ -1 & -2 \end{pmatrix} \] ### Step 2: Calculate \( A^t \cdot A \) Now, we will multiply \( A^t \) by \( A \): \[ A^t \cdot A = \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ -1 & -2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & -2 \end{pmatrix} \] To perform the multiplication, we will calculate each element of the resulting matrix: 1. **First row, first column**: \[ 2 \cdot 2 + 0 \cdot 0 = 4 \] 2. **First row, second column**: \[ 2 \cdot 1 + 0 \cdot 1 = 2 \] 3. **First row, third column**: \[ 2 \cdot (-1) + 0 \cdot (-2) = -2 \] 4. **Second row, first column**: \[ 1 \cdot 2 + 1 \cdot 0 = 2 \] 5. **Second row, second column**: \[ 1 \cdot 1 + 1 \cdot 1 = 2 \] 6. **Second row, third column**: \[ 1 \cdot (-1) + 1 \cdot (-2) = -3 \] 7. **Third row, first column**: \[ -1 \cdot 2 + (-2) \cdot 0 = -2 \] 8. **Third row, second column**: \[ -1 \cdot 1 + (-2) \cdot 1 = -3 \] 9. **Third row, third column**: \[ -1 \cdot (-1) + (-2) \cdot (-2) = 1 + 4 = 5 \] Putting these together, we get: \[ A^t \cdot A = \begin{pmatrix} 4 & 2 & -2 \\ 2 & 2 & -3 \\ -2 & -3 & 5 \end{pmatrix} \] ### Step 3: Calculate \( A \cdot A^t \) Next, we will multiply \( A \) by \( A^t \): \[ A \cdot A^t = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & -2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ -1 & -2 \end{pmatrix} \] Calculating each element: 1. **First row, first column**: \[ 2 \cdot 2 + 1 \cdot 1 + (-1) \cdot (-1) = 4 + 1 + 1 = 6 \] 2. **First row, second column**: \[ 2 \cdot 0 + 1 \cdot 1 + (-1) \cdot (-2) = 0 + 1 + 2 = 3 \] 3. **Second row, first column**: \[ 0 \cdot 2 + 1 \cdot 1 + (-2) \cdot (-1) = 0 + 1 + 2 = 3 \] 4. **Second row, second column**: \[ 0 \cdot 0 + 1 \cdot 1 + (-2) \cdot (-2) = 0 + 1 + 4 = 5 \] Putting these together, we get: \[ A \cdot A^t = \begin{pmatrix} 6 & 3 \\ 3 & 5 \end{pmatrix} \] ### Final Results Thus, the results are: (i) \( A^t \cdot A = \begin{pmatrix} 4 & 2 & -2 \\ 2 & 2 & -3 \\ -2 & -3 & 5 \end{pmatrix} \) (ii) \( A \cdot A^t = \begin{pmatrix} 6 & 3 \\ 3 & 5 \end{pmatrix} \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,2,5),(,1,3):}], B=[{:(,4,-2),(,-1,3):}] and I is the identify matric of the same order and A^(t) is the transpose of matrix A, find A^(t) B+BI .

If matrix A=[1\ 2\ 3],\ write A A' , where A ' is the transpose of matrix A

Let a,b,c be positive real numbers with abc=1 let A =[{:(a,b,c),(b,c,a),(c,a,b):}] if A ^(T) A =I where A^(T) is the transpose of A and I is the identity matrix , then determine the value of a^(2) +b^(2)+c^(2)

If A=[[2,4],[5,6]] , show that (A-A^T) is a skew symmetric matrix, where A^T is the transpose of matrix A.

If A=[[3,4],[5,1]] , show that A-A^T is a skew symmetric matrix, where A^T denotes the transpose of matrix A

If A=[[4,1],[5,8]] , show that A+A^T is symmetric matrix, where A^T denotes the transpose of matrix A

Let A and B be two matrices such that the order of A is 5xx7 . If A^(T)B and BA^(T) are both defined, then (where A^(T) is the transpose of matrix A)

If matrix A=[{:(,2,1,3),(,4,-3,2):}] and B=[{:(,3,-2),(,7,4):}] , find transpose matrices A^t and B^t . If possible, find (i) A+A^t (ii) B+B^t

Let A and B are square matrices of order 2 such that A+adj(B^(T))=[(3,2),(2,3)] and A^(T)-adj(B)=[(-2,-1),(-1, -1)] , then A^(2)+2A^(3)+3A^(4)+5A^(5) is equal to (where M^(T) and adj(M) represent the transpose matrix and adjoint matrix of matrix M respectively and I represents the identity matrix of order 2)

Given A=[{:(,-3,6),(,0,-9):}] and A^t is it transpose matrix. Find : (i) 2A+3A^(t) (ii) 2A^(t)-3A

ICSE-MATRICES-Exercise 9C
  1. If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,...

    Text Solution

    |

  2. If A and B are any two 2 xx 2 matrices such that AB=BA=B and B is not ...

    Text Solution

    |

  3. Given A=[{:(,3,0),(,0,4):}], B=[{:(,a,b),(,0,c):}] and AB=A+B, find t...

    Text Solution

    |

  4. If P=[{:(,1,2),(,2,-1):}] and Q=[{:(,1,0),(,2,1):}] then compute : (...

    Text Solution

    |

  5. Give the matrices : A=[{:(,2,1),(,4,2):}], B=[{:(,3,4),(,-1,-2):}] a...

    Text Solution

    |

  6. If A=[{:(,1,2),(,3,4):}], B=[{:(,6,1),(,1,1):}] and C=[{:(,-2,-3),(,0,...

    Text Solution

    |

  7. If A=[{:(,2,1),(,1,3):}] and B=[ {: (, 3),(,-11 ):}] . find the mat...

    Text Solution

    |

  8. If A=[{:(,4,2),(,1,1):}], find (A-2I) (A-3I).

    Text Solution

    |

  9. If A=[{:(,2,1,-1),(,0,1,-2):}] find: (i) A^(t).A (ii) A.A^(t) wher...

    Text Solution

    |

  10. If M=[{:(,4,1),(,-1,2):}] show that 6M-M^2=9I, where I is a 2 xx 2 uni...

    Text Solution

    |

  11. If P=[{:(,2,6),(,3,9):}] and Q=[{:(,3,x),(,y,2):}]. find x and y such ...

    Text Solution

    |

  12. Evalutate: [{:(,2cos 60^@, -2sin 30^@),(,-tan 45^@,cos 0^@):}] [{:(,...

    Text Solution

    |

  13. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  14. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  15. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  16. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  17. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  18. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  19. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |

  20. State with reason, whether the following are true of false. A, B and C...

    Text Solution

    |