Home
Class 10
MATHS
Given [{:(,2,1),(,-3,4):}]. X=[{:(,7),(,...

Given `[{:(,2,1),(,-3,4):}]. X=[{:(,7),(,6):}]`. Write :
(i) the order of the matrix X.
(ii) the matrix X.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will address both parts: (i) finding the order of the matrix \( X \) and (ii) determining the matrix \( X \). ### Step 1: Determine the order of the matrix \( X \) Given the equation: \[ \begin{pmatrix} 2 & 1 \\ -3 & 4 \end{pmatrix} \cdot X = \begin{pmatrix} 7 \\ 6 \end{pmatrix} \] 1. The matrix on the left side, \( \begin{pmatrix} 2 & 1 \\ -3 & 4 \end{pmatrix} \), is a \( 2 \times 2 \) matrix (2 rows and 2 columns). 2. The matrix on the right side, \( \begin{pmatrix} 7 \\ 6 \end{pmatrix} \), is a \( 2 \times 1 \) matrix (2 rows and 1 column). To multiply these matrices, the number of columns in the first matrix must equal the number of rows in the second matrix. Therefore, since the first matrix has 2 columns, the matrix \( X \) must have 2 rows. Since the resulting matrix on the right side has 1 column, the matrix \( X \) must also have 1 column. Thus, the order of the matrix \( X \) is: \[ \text{Order of } X = 2 \times 1 \] ### Step 2: Determine the matrix \( X \) Let us assume: \[ X = \begin{pmatrix} A \\ B \end{pmatrix} \] Now, substituting \( X \) into the equation: \[ \begin{pmatrix} 2 & 1 \\ -3 & 4 \end{pmatrix} \cdot \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 7 \\ 6 \end{pmatrix} \] Performing the matrix multiplication: \[ \begin{pmatrix} 2A + B \\ -3A + 4B \end{pmatrix} = \begin{pmatrix} 7 \\ 6 \end{pmatrix} \] This gives us two equations: 1. \( 2A + B = 7 \) (Equation 1) 2. \( -3A + 4B = 6 \) (Equation 2) Now, we will solve these equations simultaneously. **From Equation 1:** \[ B = 7 - 2A \] **Substituting \( B \) into Equation 2:** \[ -3A + 4(7 - 2A) = 6 \] \[ -3A + 28 - 8A = 6 \] \[ -11A + 28 = 6 \] \[ -11A = 6 - 28 \] \[ -11A = -22 \] \[ A = 2 \] **Substituting \( A \) back into Equation 1 to find \( B \):** \[ B = 7 - 2(2) \] \[ B = 7 - 4 \] \[ B = 3 \] Thus, the matrix \( X \) is: \[ X = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \] ### Final Answers (i) The order of the matrix \( X \) is \( 2 \times 1 \). (ii) The matrix \( X \) is \( \begin{pmatrix} 2 \\ 3 \end{pmatrix} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

In the matrix A=[{:(a,1,x),(2,sqrt(3),x^(2)-y) ,(0,5,(-2)/(5)):}] write (i) the order of the matrix A. (ii) the number of elements. (iii) elements a_(23) ,a_(31) and a_(1) ,

Given A=[{:(,1,4),(,2,3):}] and B=[{:(,-4,-1),(,-3,-2):}] (i) find the matrix 2A+B. (ii) find a matrix C such that : C+B=[{:(,0,0),(,0,0):}]

If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),(,-8):}] find the matrix 'X' and matrix Y.

Given A=[{:(,-1,0),(,2,-4):}] and B=[{:(,3,-3),(,-2,0):}] find the matrix X in each of the following (i) A+X=B (ii) A-X=B (iii) X-B=A

Given A=[{:(,1,1),(,-2,0):}] and B=[{:(,2,-1),(,1,1):}] Solve for matrix X: (i) X+2A=B (ii) 3A+B+2X=0

Write the adjoint of the matrix A=[(-3, 4),(7,-2)] .

If A=[{:(,8,6),(,-2,4):}] and B=[{:(,-3,5),(,1,0):}] then solve for 2 xx 2 matrix X such that (i) A+X=B (ii) X-B=A

(i) if A+B=[{:(3,4),(-1,0):}]and A-B =[{:(1,2),(5,6):}], then find the matrix A and B. (ii) if X+Y=[{:(2,1),(1,2):}]and 2X-Y=[{:(1,2),(2,1):}] then find X and Y .

If X=[{:( 3,1,-1) ,(5,-2,-3) :}] "and" Y= [{:( 2,1,-1),( 7,2,4):}] then find (i) x+y, (ii) 2x-3y. (iii) a matrix Z such that X+Y+Z is a zero matrix.

ICSE-MATRICES-Exercise 9D
  1. Find x and y, if : [3x 8] [{:(,1,4),(,3,7):}] -3 [2 -7]=5[3,2y]

    Text Solution

    |

  2. If [x,y] [{:(,x),(,y):}]=[25] and [-x,y] [{:(,2x),(,y):}]=[-2,]2 find ...

    Text Solution

    |

  3. Given [{:(,2,1),(,-3,4):}]. X=[{:(,7),(,6):}]. Write : (i) the order...

    Text Solution

    |

  4. Evaluate : [{:(,cos 45^@, sin 30^@),(,sqrt2 cos 0^@, sin 0^@):}] [{:...

    Text Solution

    |

  5. If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B, find ma...

    Text Solution

    |

  6. If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(...

    Text Solution

    |

  7. If A=[{:(,1,2),(,2,1):}] and B=[{:(,2,1),(,1,2):}] find : (i) A(BA) ...

    Text Solution

    |

  8. Find x and y, if : [{:(,x,3x),(,y,4y):}] [{:(,2),(,1):}]=[{:(,5),(,12)...

    Text Solution

    |

  9. If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),...

    Text Solution

    |

  10. Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(...

    Text Solution

    |

  11. Find the value of x, given that: A^2=B, A=[{:(,2,12),(,0,1):}] and...

    Text Solution

    |

  12. If A=[{:(,2,5),(,1,3):}], B=[{:(,4,-2),(,-1,3):}] and I is the identif...

    Text Solution

    |

  13. Given A=[{:(,2,-6),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,4,0),(...

    Text Solution

    |

  14. Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(...

    Text Solution

    |

  15. Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}]. Find A^2+AB+B^2

    Text Solution

    |

  16. If A=[{:(,3,a),(,-4,8):}], B=[{:(,c,4),(,-3,0):}] , C=[{:(,-1,4),(,3,b...

    Text Solution

    |

  17. Given A=[{:(,p,0),(,0,2):}], B=[{:(,0,-q),(,1,0):}], C=[{:(,2,-2),(,2,...

    Text Solution

    |

  18. Given A=[{:(,3,-2),(,-1,4):}], B=[{:(,6),(,1):}], C=[{:(,-4),(,-5):}] ...

    Text Solution

    |

  19. Evaluate : [{:(,4 sin 30^@ 2 cos 60^@), (,sin 90^@ 2 cos 0^@):}] ...

    Text Solution

    |

  20. If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}],find A^2-5A+7I.

    Text Solution

    |