Home
Class 10
MATHS
If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2...

If matrix `X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),(,-8):}]` find the matrix 'X' and matrix Y.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find matrices \( X \) and \( Y \) given the equation \( 2X - 3Y = \begin{pmatrix} 10 \\ -8 \end{pmatrix} \) and the matrix \( X \) defined as: \[ X = \begin{pmatrix} -3 & 4 \\ 2 & -3 \end{pmatrix} \] and the matrix \( Y \) defined as: \[ Y = \begin{pmatrix} 2 \\ -2 \end{pmatrix} \] ### Step 1: Calculate \( 2X \) First, we need to calculate \( 2X \): \[ 2X = 2 \cdot \begin{pmatrix} -3 & 4 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 2 \cdot -3 & 2 \cdot 4 \\ 2 \cdot 2 & 2 \cdot -3 \end{pmatrix} = \begin{pmatrix} -6 & 8 \\ 4 & -6 \end{pmatrix} \] **Hint:** To multiply a matrix by a scalar, multiply each element of the matrix by that scalar. ### Step 2: Calculate \( 3Y \) Next, we calculate \( 3Y \): \[ 3Y = 3 \cdot \begin{pmatrix} 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 3 \cdot 2 \\ 3 \cdot -2 \end{pmatrix} = \begin{pmatrix} 6 \\ -6 \end{pmatrix} \] **Hint:** Similar to the previous step, multiply each element of the matrix by the scalar. ### Step 3: Substitute into the equation \( 2X - 3Y = \begin{pmatrix} 10 \\ -8 \end{pmatrix} \) Now we substitute \( 2X \) and \( 3Y \) into the equation: \[ 2X - 3Y = \begin{pmatrix} -6 & 8 \\ 4 & -6 \end{pmatrix} - \begin{pmatrix} 6 \\ -6 \end{pmatrix} \] ### Step 4: Perform the subtraction Now we perform the subtraction: \[ 2X - 3Y = \begin{pmatrix} -6 - 6 \\ 4 - (-6) \end{pmatrix} = \begin{pmatrix} -12 \\ 4 + 6 \end{pmatrix} = \begin{pmatrix} -12 \\ 10 \end{pmatrix} \] ### Step 5: Set the result equal to the given matrix We know from the problem statement that: \[ 2X - 3Y = \begin{pmatrix} 10 \\ -8 \end{pmatrix} \] Thus, we have: \[ \begin{pmatrix} -12 \\ 10 \end{pmatrix} = \begin{pmatrix} 10 \\ -8 \end{pmatrix} \] ### Step 6: Solve for \( Y \) Now we need to isolate \( Y \): Rearranging the equation gives us: \[ 3Y = 2X - \begin{pmatrix} 10 \\ -8 \end{pmatrix} \] Substituting \( 2X \): \[ 3Y = \begin{pmatrix} -12 \\ 10 \end{pmatrix} - \begin{pmatrix} 10 \\ -8 \end{pmatrix} = \begin{pmatrix} -12 - 10 \\ 10 - (-8) \end{pmatrix} = \begin{pmatrix} -22 \\ 18 \end{pmatrix} \] ### Step 7: Divide by 3 to find \( Y \) Now we divide by 3: \[ Y = \frac{1}{3} \begin{pmatrix} -22 \\ 18 \end{pmatrix} = \begin{pmatrix} -\frac{22}{3} \\ 6 \end{pmatrix} \] ### Final Result Thus, the matrices are: \[ X = \begin{pmatrix} -3 & 4 \\ 2 & -3 \end{pmatrix}, \quad Y = \begin{pmatrix} -\frac{22}{3} \\ 6 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If P=[{:(,2,6),(,3,9):}] and Q=[{:(,3,x),(,y,2):}] . find x and y such that PQ=null matrix.

Given matrix A=[{:(,5),(,-3):}] and matrix B=[{:(,-1),(,7):}] find matrix X such that : A+2X=B.

Given [{:(,2,1),(,-3,4):}]. X=[{:(,7),(,6):}] . Write : (i) the order of the matrix X. (ii) the matrix X.

FInd matrix X, if X+[(2,5),(3,2)]=[(4,0),(-7,6)]

If X=[{:( 3,1,-1) ,(5,-2,-3) :}] "and" Y= [{:( 2,1,-1),( 7,2,4):}] then find (i) x+y, (ii) 2x-3y. (iii) a matrix Z such that X+Y+Z is a zero matrix.

(i) if A+B=[{:(3,4),(-1,0):}]and A-B =[{:(1,2),(5,6):}], then find the matrix A and B. (ii) if X+Y=[{:(2,1),(1,2):}]and 2X-Y=[{:(1,2),(2,1):}] then find X and Y .

Find the matrix A such that A.[{:(2,3),(4,5):}]=[{:(0,-4),(10," "3):}].

Find the matrix X for which [(1,-4) ,(3,-2)]X=[(-16,-6),( 7, 2)] .

ICSE-MATRICES-Exercise 9D
  1. If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B, find ma...

    Text Solution

    |

  2. If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(...

    Text Solution

    |

  3. If A=[{:(,1,2),(,2,1):}] and B=[{:(,2,1),(,1,2):}] find : (i) A(BA) ...

    Text Solution

    |

  4. Find x and y, if : [{:(,x,3x),(,y,4y):}] [{:(,2),(,1):}]=[{:(,5),(,12)...

    Text Solution

    |

  5. If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),...

    Text Solution

    |

  6. Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(...

    Text Solution

    |

  7. Find the value of x, given that: A^2=B, A=[{:(,2,12),(,0,1):}] and...

    Text Solution

    |

  8. If A=[{:(,2,5),(,1,3):}], B=[{:(,4,-2),(,-1,3):}] and I is the identif...

    Text Solution

    |

  9. Given A=[{:(,2,-6),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,4,0),(...

    Text Solution

    |

  10. Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(...

    Text Solution

    |

  11. Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}]. Find A^2+AB+B^2

    Text Solution

    |

  12. If A=[{:(,3,a),(,-4,8):}], B=[{:(,c,4),(,-3,0):}] , C=[{:(,-1,4),(,3,b...

    Text Solution

    |

  13. Given A=[{:(,p,0),(,0,2):}], B=[{:(,0,-q),(,1,0):}], C=[{:(,2,-2),(,2,...

    Text Solution

    |

  14. Given A=[{:(,3,-2),(,-1,4):}], B=[{:(,6),(,1):}], C=[{:(,-4),(,-5):}] ...

    Text Solution

    |

  15. Evaluate : [{:(,4 sin 30^@ 2 cos 60^@), (,sin 90^@ 2 cos 0^@):}] ...

    Text Solution

    |

  16. If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}],find A^2-5A+7I.

    Text Solution

    |

  17. Given A=[{:(,2,0),(,-1,7):}] and I=[{:(,1,0),(,0,1):}] and A^2 =9A+mI....

    Text Solution

    |

  18. Given matrix A=[{:(,4sin30^@ cos 0^@),(,cos 0^@ 4 sin 30^@):}] and B=...

    Text Solution

    |

  19. If A=[{:(,1,3),(,3,4):}], B=[{:(,-2,1),(,-3,2):}] and A^2-5B^2=5C. fin...

    Text Solution

    |

  20. Given matrix B=[{:(,1,1),(,8,3):}]. Find the matrix X if, X=B^2-4B. He...

    Text Solution

    |