Home
Class 10
MATHS
Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2)...

Let `A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(,1,-1):}]`. Find `A^2-A+BC`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \( A^2 - A + BC \) where: \[ A = \begin{pmatrix} 4 & -2 \\ 6 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix}, \quad C = \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we need to multiply matrix \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 4 & -2 \\ 6 & -3 \end{pmatrix} \times \begin{pmatrix} 4 & -2 \\ 6 & -3 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row, first column: \[ 4 \times 4 + (-2) \times 6 = 16 - 12 = 4 \] - First row, second column: \[ 4 \times (-2) + (-2) \times (-3) = -8 + 6 = -2 \] - Second row, first column: \[ 6 \times 4 + (-3) \times 6 = 24 - 18 = 6 \] - Second row, second column: \[ 6 \times (-2) + (-3) \times (-3) = -12 + 9 = -3 \] Thus, we have: \[ A^2 = \begin{pmatrix} 4 & -2 \\ 6 & -3 \end{pmatrix} \] ### Step 2: Calculate \( BC \) Next, we calculate \( BC \): \[ BC = B \times C = \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix} \times \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix} \] Calculating the elements of \( BC \): - First row, first column: \[ 0 \times (-2) + 2 \times 1 = 0 + 2 = 2 \] - First row, second column: \[ 0 \times 3 + 2 \times (-1) = 0 - 2 = -2 \] - Second row, first column: \[ 1 \times (-2) + (-1) \times 1 = -2 - 1 = -3 \] - Second row, second column: \[ 1 \times 3 + (-1) \times (-1) = 3 + 1 = 4 \] Thus, we have: \[ BC = \begin{pmatrix} 2 & -2 \\ -3 & 4 \end{pmatrix} \] ### Step 3: Calculate \( A^2 - A + BC \) Now we will combine all the results: \[ A^2 - A + BC = \begin{pmatrix} 4 & -2 \\ 6 & -3 \end{pmatrix} - \begin{pmatrix} 4 & -2 \\ 6 & -3 \end{pmatrix} + \begin{pmatrix} 2 & -2 \\ -3 & 4 \end{pmatrix} \] Calculating each element: - First row, first column: \[ 4 - 4 + 2 = 2 \] - First row, second column: \[ -2 - (-2) - 2 = -2 \] - Second row, first column: \[ 6 - 6 - 3 = -3 \] - Second row, second column: \[ -3 - (-3) + 4 = 4 \] Thus, the final result is: \[ A^2 - A + BC = \begin{pmatrix} 2 & -2 \\ -3 & 4 \end{pmatrix} \] ### Final Answer: \[ \begin{pmatrix} 2 & -2 \\ -3 & 4 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(,-1,4):}] . Find A^2+AC-5B .

Given A=[{:(,1,2),(,-2,3):}], B=[{:(,-2,-1),(,1,2):}] and C=[{:(,0,3),(,2,-1):}] , find A+2B-3C.

If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,6):}] Find AB-5C.

If A=[{:(,1,3),(,2,4):}], B=[{:(,1,2),(,4,3):}] and C=[{:(,4,3),(,1,2):}] . Find (i) (AB) C (ii) A (BC) Is A(BC)=(AB) C?

Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}] . Find A^2+AB+B^2

If A=[{:(,1,4),(,2,1):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2):}] simplify : A^2+BC .

Given A=[{:(,3,-2),(,-1,4):}], B=[{:(,6),(,1):}], C=[{:(,-4),(,-5):}] and D=[{:(,2),(,2):}] . Find AB+2C-4D

Let A+B+C= [{:(,4,-1),(,0,1):}],4A+2B+C=[{:(,0,-1),(,-3,2):}]and 9A+3B+C=[{:(,0,2),(,2,1):}]"then find A"

If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2):}] then show that (i) A(B+C)=AB+AC (ii) (B-A)C=BC-AC .

Given, A=[{:(1,3,5),(-2,0,2),(0,0,-3):}], B = [{:(0,3),(-2,0),(0,-4):}] and C=[{:(4,1,-2),(3,2,1),(2,-1,7):}], find (whichever defined) (i)A+B. (ii)A+C.

ICSE-MATRICES-Exercise 9D
  1. If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B, find ma...

    Text Solution

    |

  2. If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(...

    Text Solution

    |

  3. If A=[{:(,1,2),(,2,1):}] and B=[{:(,2,1),(,1,2):}] find : (i) A(BA) ...

    Text Solution

    |

  4. Find x and y, if : [{:(,x,3x),(,y,4y):}] [{:(,2),(,1):}]=[{:(,5),(,12)...

    Text Solution

    |

  5. If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),...

    Text Solution

    |

  6. Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(...

    Text Solution

    |

  7. Find the value of x, given that: A^2=B, A=[{:(,2,12),(,0,1):}] and...

    Text Solution

    |

  8. If A=[{:(,2,5),(,1,3):}], B=[{:(,4,-2),(,-1,3):}] and I is the identif...

    Text Solution

    |

  9. Given A=[{:(,2,-6),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,4,0),(...

    Text Solution

    |

  10. Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(...

    Text Solution

    |

  11. Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}]. Find A^2+AB+B^2

    Text Solution

    |

  12. If A=[{:(,3,a),(,-4,8):}], B=[{:(,c,4),(,-3,0):}] , C=[{:(,-1,4),(,3,b...

    Text Solution

    |

  13. Given A=[{:(,p,0),(,0,2):}], B=[{:(,0,-q),(,1,0):}], C=[{:(,2,-2),(,2,...

    Text Solution

    |

  14. Given A=[{:(,3,-2),(,-1,4):}], B=[{:(,6),(,1):}], C=[{:(,-4),(,-5):}] ...

    Text Solution

    |

  15. Evaluate : [{:(,4 sin 30^@ 2 cos 60^@), (,sin 90^@ 2 cos 0^@):}] ...

    Text Solution

    |

  16. If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}],find A^2-5A+7I.

    Text Solution

    |

  17. Given A=[{:(,2,0),(,-1,7):}] and I=[{:(,1,0),(,0,1):}] and A^2 =9A+mI....

    Text Solution

    |

  18. Given matrix A=[{:(,4sin30^@ cos 0^@),(,cos 0^@ 4 sin 30^@):}] and B=...

    Text Solution

    |

  19. If A=[{:(,1,3),(,3,4):}], B=[{:(,-2,1),(,-3,2):}] and A^2-5B^2=5C. fin...

    Text Solution

    |

  20. Given matrix B=[{:(,1,1),(,8,3):}]. Find the matrix X if, X=B^2-4B. He...

    Text Solution

    |