Home
Class 10
MATHS
Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(...

Let `A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}]`. Find `A^2+AB+B^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( A^2 + AB + B^2 \) for the matrices \( A \) and \( B \). Given: \[ A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 \\ -1 & 0 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 0 \cdot 2 = 1 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 1 = 0 \) - Second row, first column: \( 2 \cdot 1 + 1 \cdot 2 = 4 \) - Second row, second column: \( 2 \cdot 0 + 1 \cdot 1 = 1 \) Thus, \[ A^2 = \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix} \] ### Step 2: Calculate \( B^2 \) Now, we calculate \( B^2 \): \[ B^2 = B \cdot B = \begin{pmatrix} 2 & 3 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ -1 & 0 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2 \cdot 2 + 3 \cdot (-1) = 4 - 3 = 1 \) - First row, second column: \( 2 \cdot 3 + 3 \cdot 0 = 6 + 0 = 6 \) - Second row, first column: \( -1 \cdot 2 + 0 \cdot (-1) = -2 + 0 = -2 \) - Second row, second column: \( -1 \cdot 3 + 0 \cdot 0 = -3 + 0 = -3 \) Thus, \[ B^2 = \begin{pmatrix} 1 & 6 \\ -2 & -3 \end{pmatrix} \] ### Step 3: Calculate \( AB \) Next, we calculate \( AB \): \[ AB = A \cdot B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ -1 & 0 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 2 + 0 \cdot (-1) = 2 + 0 = 2 \) - First row, second column: \( 1 \cdot 3 + 0 \cdot 0 = 3 + 0 = 3 \) - Second row, first column: \( 2 \cdot 2 + 1 \cdot (-1) = 4 - 1 = 3 \) - Second row, second column: \( 2 \cdot 3 + 1 \cdot 0 = 6 + 0 = 6 \) Thus, \[ AB = \begin{pmatrix} 2 & 3 \\ 3 & 6 \end{pmatrix} \] ### Step 4: Calculate \( A^2 + AB + B^2 \) Now, we add \( A^2 \), \( AB \), and \( B^2 \): \[ A^2 + AB + B^2 = \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix} + \begin{pmatrix} 2 & 3 \\ 3 & 6 \end{pmatrix} + \begin{pmatrix} 1 & 6 \\ -2 & -3 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 + 2 + 1 = 4 \) - First row, second column: \( 0 + 3 + 6 = 9 \) - Second row, first column: \( 4 + 3 - 2 = 5 \) - Second row, second column: \( 1 + 6 - 3 = 4 \) Thus, \[ A^2 + AB + B^2 = \begin{pmatrix} 4 & 9 \\ 5 & 4 \end{pmatrix} \] ### Final Answer: \[ A^2 + AB + B^2 = \begin{pmatrix} 4 & 9 \\ 5 & 4 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(,1,-1):}] . Find A^2-A+BC .

Given A=[{:(,4,1),(,2,3):}] and B=[{:(,1,0),(,-2,01):}] , Find (i) A-B (ii) A^2 (iii) AB (iv) A^2-AB+2B

Let A={:[(1,2,3),(0,1,0)]:}andB={:[(-1,4,3),(1,0,0)]:} Find 2A +3B.

Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(,-1,4):}] . Find A^2+AC-5B .

Given A=[{:(,1,2),(,-2,3):}], B=[{:(,-2,-1),(,1,2):}] and C=[{:(,0,3),(,2,-1):}] , find A+2B-3C.

If A=[(3, 0),(5, 1)] and B=[(-4,2),(1, 0)] Find A^(2)-2AB+B^(2)

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

Let A+B+C= [{:(,4,-1),(,0,1):}],4A+2B+C=[{:(,0,-1),(,-3,2):}]and 9A+3B+C=[{:(,0,2),(,2,1):}]"then find A"

Let A={:[(1,2),(3,4)]:},B={:[(-1,-2),(-4,-3)]:} , find AB and BA.

If A=[{:(,3,2),(,0,5):}] and B=[{:(,1,0),(,1,2):}] , find : (i) (A+B) (A-B) (ii) A^2-B^2 (iii) Is (A+B) (A-B) =A^2-B^2?

ICSE-MATRICES-Exercise 9D
  1. If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B, find ma...

    Text Solution

    |

  2. If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(...

    Text Solution

    |

  3. If A=[{:(,1,2),(,2,1):}] and B=[{:(,2,1),(,1,2):}] find : (i) A(BA) ...

    Text Solution

    |

  4. Find x and y, if : [{:(,x,3x),(,y,4y):}] [{:(,2),(,1):}]=[{:(,5),(,12)...

    Text Solution

    |

  5. If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),...

    Text Solution

    |

  6. Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(...

    Text Solution

    |

  7. Find the value of x, given that: A^2=B, A=[{:(,2,12),(,0,1):}] and...

    Text Solution

    |

  8. If A=[{:(,2,5),(,1,3):}], B=[{:(,4,-2),(,-1,3):}] and I is the identif...

    Text Solution

    |

  9. Given A=[{:(,2,-6),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,4,0),(...

    Text Solution

    |

  10. Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(...

    Text Solution

    |

  11. Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}]. Find A^2+AB+B^2

    Text Solution

    |

  12. If A=[{:(,3,a),(,-4,8):}], B=[{:(,c,4),(,-3,0):}] , C=[{:(,-1,4),(,3,b...

    Text Solution

    |

  13. Given A=[{:(,p,0),(,0,2):}], B=[{:(,0,-q),(,1,0):}], C=[{:(,2,-2),(,2,...

    Text Solution

    |

  14. Given A=[{:(,3,-2),(,-1,4):}], B=[{:(,6),(,1):}], C=[{:(,-4),(,-5):}] ...

    Text Solution

    |

  15. Evaluate : [{:(,4 sin 30^@ 2 cos 60^@), (,sin 90^@ 2 cos 0^@):}] ...

    Text Solution

    |

  16. If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}],find A^2-5A+7I.

    Text Solution

    |

  17. Given A=[{:(,2,0),(,-1,7):}] and I=[{:(,1,0),(,0,1):}] and A^2 =9A+mI....

    Text Solution

    |

  18. Given matrix A=[{:(,4sin30^@ cos 0^@),(,cos 0^@ 4 sin 30^@):}] and B=...

    Text Solution

    |

  19. If A=[{:(,1,3),(,3,4):}], B=[{:(,-2,1),(,-3,2):}] and A^2-5B^2=5C. fin...

    Text Solution

    |

  20. Given matrix B=[{:(,1,1),(,8,3):}]. Find the matrix X if, X=B^2-4B. He...

    Text Solution

    |