Home
Class 10
MATHS
If A=[{:(,3,a),(,-4,8):}], B=[{:(,c,4),(...

If `A=[{:(,3,a),(,-4,8):}], B=[{:(,c,4),(,-3,0):}] , C=[{:(,-1,4),(,3,b):}]` and 3A-2C=6B. Find the values of a,b and c.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3A - 2C = 6B\) given the matrices \(A\), \(B\), and \(C\), we will follow these steps: ### Step 1: Write down the matrices We have: \[ A = \begin{pmatrix} 3 & a \\ -4 & 8 \end{pmatrix}, \quad B = \begin{pmatrix} c & 4 \\ -3 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 4 \\ 3 & b \end{pmatrix} \] ### Step 2: Calculate \(3A\) To find \(3A\), we multiply each element of matrix \(A\) by 3: \[ 3A = 3 \cdot \begin{pmatrix} 3 & a \\ -4 & 8 \end{pmatrix} = \begin{pmatrix} 9 & 3a \\ -12 & 24 \end{pmatrix} \] ### Step 3: Calculate \(2C\) Next, we find \(2C\) by multiplying each element of matrix \(C\) by 2: \[ 2C = 2 \cdot \begin{pmatrix} -1 & 4 \\ 3 & b \end{pmatrix} = \begin{pmatrix} -2 & 8 \\ 6 & 2b \end{pmatrix} \] ### Step 4: Set up the equation \(3A - 2C\) Now, we can substitute \(3A\) and \(2C\) into the equation: \[ 3A - 2C = \begin{pmatrix} 9 & 3a \\ -12 & 24 \end{pmatrix} - \begin{pmatrix} -2 & 8 \\ 6 & 2b \end{pmatrix} = \begin{pmatrix} 9 + 2 & 3a - 8 \\ -12 - 6 & 24 - 2b \end{pmatrix} \] This simplifies to: \[ 3A - 2C = \begin{pmatrix} 11 & 3a - 8 \\ -18 & 24 - 2b \end{pmatrix} \] ### Step 5: Calculate \(6B\) Next, we calculate \(6B\) by multiplying each element of matrix \(B\) by 6: \[ 6B = 6 \cdot \begin{pmatrix} c & 4 \\ -3 & 0 \end{pmatrix} = \begin{pmatrix} 6c & 24 \\ -18 & 0 \end{pmatrix} \] ### Step 6: Set the two sides equal Now we equate \(3A - 2C\) and \(6B\): \[ \begin{pmatrix} 11 & 3a - 8 \\ -18 & 24 - 2b \end{pmatrix} = \begin{pmatrix} 6c & 24 \\ -18 & 0 \end{pmatrix} \] ### Step 7: Set up equations from the matrix equality From the matrix equality, we can derive the following equations: 1. \(11 = 6c\) 2. \(3a - 8 = 24\) 3. \(-18 = -18\) (This equation is always true) 4. \(24 - 2b = 0\) ### Step 8: Solve for \(c\) From the first equation: \[ 6c = 11 \implies c = \frac{11}{6} \] ### Step 9: Solve for \(a\) From the second equation: \[ 3a - 8 = 24 \implies 3a = 24 + 8 = 32 \implies a = \frac{32}{3} \] ### Step 10: Solve for \(b\) From the fourth equation: \[ 24 - 2b = 0 \implies 2b = 24 \implies b = 12 \] ### Final Values Thus, the values are: \[ a = \frac{32}{3}, \quad b = 12, \quad c = \frac{11}{6} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

Given A=[{:(,3,0),(,0,4):}], B=[{:(,a,b),(,0,c):}] and AB=A+B, find the values of a,b and c.

If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(,5,0),(,7,3):}] find the values of a,b and c.

Let A=[{:(,5,4),(,3,-2):}], B=[{:(,-3,0),(,1,4):}] and C=[{:(,1,-3),(,0,2):}], find : (i) A+B and B+A (ii) (A+B)+C and A+(B+C) (iii) Is A+B=B+A? (iv) Is (A+B) +C=A+(B+C)?

If A=[{:(,5,4),(,3,-1):}], B=[{:(,2,1),(,0,4):}] and C=[{:(,-3,2),(,1,0):}] , find : (i) A+C (ii) B-A (iii) A+B-C

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

Let A+B+C= [{:(,4,-1),(,0,1):}],4A+2B+C=[{:(,0,-1),(,-3,2):}]and 9A+3B+C=[{:(,0,2),(,2,1):}]"then find A"

if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]and c=[{:(4,1,2),(0,3,2),(1,-2,3):}], then compure (A+B) and (B-C), Also , verify that A+(B-C)=(A+B)-C.

If a = 3, b = 2 and c = -4, find the values of: 2a+3b-5c

If A=[(2, 3),( 5 ,7)] , B=[(-1 ,0, 2),( 3, 4, 1)] , C=[(-1, 2 ,3),( 2 ,1, 0)] , find A+B and B+C (ii) 2B+3A and 3C-4B .

ICSE-MATRICES-Exercise 9D
  1. If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B, find ma...

    Text Solution

    |

  2. If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(...

    Text Solution

    |

  3. If A=[{:(,1,2),(,2,1):}] and B=[{:(,2,1),(,1,2):}] find : (i) A(BA) ...

    Text Solution

    |

  4. Find x and y, if : [{:(,x,3x),(,y,4y):}] [{:(,2),(,1):}]=[{:(,5),(,12)...

    Text Solution

    |

  5. If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),...

    Text Solution

    |

  6. Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(...

    Text Solution

    |

  7. Find the value of x, given that: A^2=B, A=[{:(,2,12),(,0,1):}] and...

    Text Solution

    |

  8. If A=[{:(,2,5),(,1,3):}], B=[{:(,4,-2),(,-1,3):}] and I is the identif...

    Text Solution

    |

  9. Given A=[{:(,2,-6),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,4,0),(...

    Text Solution

    |

  10. Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(...

    Text Solution

    |

  11. Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}]. Find A^2+AB+B^2

    Text Solution

    |

  12. If A=[{:(,3,a),(,-4,8):}], B=[{:(,c,4),(,-3,0):}] , C=[{:(,-1,4),(,3,b...

    Text Solution

    |

  13. Given A=[{:(,p,0),(,0,2):}], B=[{:(,0,-q),(,1,0):}], C=[{:(,2,-2),(,2,...

    Text Solution

    |

  14. Given A=[{:(,3,-2),(,-1,4):}], B=[{:(,6),(,1):}], C=[{:(,-4),(,-5):}] ...

    Text Solution

    |

  15. Evaluate : [{:(,4 sin 30^@ 2 cos 60^@), (,sin 90^@ 2 cos 0^@):}] ...

    Text Solution

    |

  16. If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}],find A^2-5A+7I.

    Text Solution

    |

  17. Given A=[{:(,2,0),(,-1,7):}] and I=[{:(,1,0),(,0,1):}] and A^2 =9A+mI....

    Text Solution

    |

  18. Given matrix A=[{:(,4sin30^@ cos 0^@),(,cos 0^@ 4 sin 30^@):}] and B=...

    Text Solution

    |

  19. If A=[{:(,1,3),(,3,4):}], B=[{:(,-2,1),(,-3,2):}] and A^2-5B^2=5C. fin...

    Text Solution

    |

  20. Given matrix B=[{:(,1,1),(,8,3):}]. Find the matrix X if, X=B^2-4B. He...

    Text Solution

    |