Home
Class 10
MATHS
Given A=[{:(,p,0),(,0,2):}], B=[{:(,0,-q...

Given `A=[{:(,p,0),(,0,2):}], B=[{:(,0,-q),(,1,0):}], C=[{:(,2,-2),(,2,2):}] and BA=C^2.` Find the values of p and q.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( p \) and \( q \) given the matrices \( A \), \( B \), and \( C \) and the equation \( BA = C^2 \). ### Step 1: Define the matrices Given: \[ A = \begin{pmatrix} p & 0 \\ 0 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -q \\ 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & -2 \\ 2 & 2 \end{pmatrix} \] ### Step 2: Calculate \( BA \) To find \( BA \), we multiply matrix \( B \) by matrix \( A \): \[ BA = B \cdot A = \begin{pmatrix} 0 & -q \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} p & 0 \\ 0 & 2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 0 \cdot p + (-q) \cdot 0 = 0 \) - First row, second column: \( 0 \cdot 0 + (-q) \cdot 2 = -2q \) - Second row, first column: \( 1 \cdot p + 0 \cdot 0 = p \) - Second row, second column: \( 1 \cdot 0 + 0 \cdot 2 = 0 \) Thus, we have: \[ BA = \begin{pmatrix} 0 & -2q \\ p & 0 \end{pmatrix} \] ### Step 3: Calculate \( C^2 \) Next, we calculate \( C^2 \): \[ C^2 = C \cdot C = \begin{pmatrix} 2 & -2 \\ 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & -2 \\ 2 & 2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2 \cdot 2 + (-2) \cdot 2 = 4 - 4 = 0 \) - First row, second column: \( 2 \cdot (-2) + (-2) \cdot 2 = -4 - 4 = -8 \) - Second row, first column: \( 2 \cdot 2 + 2 \cdot 2 = 4 + 4 = 8 \) - Second row, second column: \( 2 \cdot (-2) + 2 \cdot 2 = -4 + 4 = 0 \) Thus, we have: \[ C^2 = \begin{pmatrix} 0 & -8 \\ 8 & 0 \end{pmatrix} \] ### Step 4: Set \( BA \) equal to \( C^2 \) Now we equate \( BA \) and \( C^2 \): \[ \begin{pmatrix} 0 & -2q \\ p & 0 \end{pmatrix} = \begin{pmatrix} 0 & -8 \\ 8 & 0 \end{pmatrix} \] From this, we can set up the following equations: 1. \( -2q = -8 \) 2. \( p = 8 \) ### Step 5: Solve for \( p \) and \( q \) From the first equation: \[ -2q = -8 \implies 2q = 8 \implies q = \frac{8}{2} = 4 \] From the second equation: \[ p = 8 \] ### Final Answer The values are: \[ p = 8, \quad q = 4 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,a,0),(,0,2):}], B=[{:(,0,-b),(,1,0):}], M=[{:(,1,-1),(,1,1):}] and BA=M^2 , find the values of a and b.

If A = [{:(0,4),(1,0):}], B = [{:( -2,0),(3,-2) :} ] and C = [ {:( -1,-2),(2,0) :}] show that : (B- C ) A = BA - CA

If P=[(6,-2),(4,-6):}] and Q = [{:(5,3),(2,0):}] find the matrix M such that 2Q - 3P - 3M =0

If p/q=(2/3)^2-:(6/7)^0, find the value of (q/p)^3

Given points P(2,3), Q(4, -2), and R(alpha,0) . Find the value of a if PR + RQ is minimum.

If P=[(lambda,0),(7,1)] and Q=[(4,0),(-7,1)] such that P^(2)=Q , then P^(3) is equal to

If P=[{:(,1,2),(,2,-1):}] and Q=[{:(,1,0),(,2,1):}] then compute : (i) P^2-Q^2 (ii) (P+Q) (P-Q) Is (P+Q) (P-Q) =P^2-Q^2 true for matrix algebra?

Let the matrix A=[(1,2,3),(0, 1,2),(0,0,1)] and BA=A where B represent 3xx3 order matrix. If the total number of 1 in matrix A^(-1) and matrix B are p and q respectively. Then the value of p+q is equal to

Three charges q_1 = 1 mu C, q_2 = -2 mu C, and q_3 = -1 mu C are placed at A (0,0,0), B(-1 , 2,3,) and C (2 , -1, 1) . Find the potential of the system of three charges at P( 1, - 2, -1) .

ICSE-MATRICES-Exercise 9D
  1. If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B, find ma...

    Text Solution

    |

  2. If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(...

    Text Solution

    |

  3. If A=[{:(,1,2),(,2,1):}] and B=[{:(,2,1),(,1,2):}] find : (i) A(BA) ...

    Text Solution

    |

  4. Find x and y, if : [{:(,x,3x),(,y,4y):}] [{:(,2),(,1):}]=[{:(,5),(,12)...

    Text Solution

    |

  5. If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),...

    Text Solution

    |

  6. Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(...

    Text Solution

    |

  7. Find the value of x, given that: A^2=B, A=[{:(,2,12),(,0,1):}] and...

    Text Solution

    |

  8. If A=[{:(,2,5),(,1,3):}], B=[{:(,4,-2),(,-1,3):}] and I is the identif...

    Text Solution

    |

  9. Given A=[{:(,2,-6),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,4,0),(...

    Text Solution

    |

  10. Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(...

    Text Solution

    |

  11. Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}]. Find A^2+AB+B^2

    Text Solution

    |

  12. If A=[{:(,3,a),(,-4,8):}], B=[{:(,c,4),(,-3,0):}] , C=[{:(,-1,4),(,3,b...

    Text Solution

    |

  13. Given A=[{:(,p,0),(,0,2):}], B=[{:(,0,-q),(,1,0):}], C=[{:(,2,-2),(,2,...

    Text Solution

    |

  14. Given A=[{:(,3,-2),(,-1,4):}], B=[{:(,6),(,1):}], C=[{:(,-4),(,-5):}] ...

    Text Solution

    |

  15. Evaluate : [{:(,4 sin 30^@ 2 cos 60^@), (,sin 90^@ 2 cos 0^@):}] ...

    Text Solution

    |

  16. If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}],find A^2-5A+7I.

    Text Solution

    |

  17. Given A=[{:(,2,0),(,-1,7):}] and I=[{:(,1,0),(,0,1):}] and A^2 =9A+mI....

    Text Solution

    |

  18. Given matrix A=[{:(,4sin30^@ cos 0^@),(,cos 0^@ 4 sin 30^@):}] and B=...

    Text Solution

    |

  19. If A=[{:(,1,3),(,3,4):}], B=[{:(,-2,1),(,-3,2):}] and A^2-5B^2=5C. fin...

    Text Solution

    |

  20. Given matrix B=[{:(,1,1),(,8,3):}]. Find the matrix X if, X=B^2-4B. He...

    Text Solution

    |