Home
Class 10
MATHS
If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0...

If `A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}]`,find `A^2-5A+7I`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( A^2 - 5A + 7I \) where \( A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \) and \( I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we need to multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row, first column: \[ 3 \cdot 3 + 1 \cdot (-1) = 9 - 1 = 8 \] - First row, second column: \[ 3 \cdot 1 + 1 \cdot 2 = 3 + 2 = 5 \] - Second row, first column: \[ -1 \cdot 3 + 2 \cdot (-1) = -3 - 2 = -5 \] - Second row, second column: \[ -1 \cdot 1 + 2 \cdot 2 = -1 + 4 = 3 \] Thus, we have: \[ A^2 = \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} \] ### Step 2: Calculate \( 5A \) Next, we calculate \( 5A \): \[ 5A = 5 \cdot \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 5 \cdot 3 & 5 \cdot 1 \\ 5 \cdot (-1) & 5 \cdot 2 \end{pmatrix} = \begin{pmatrix} 15 & 5 \\ -5 & 10 \end{pmatrix} \] ### Step 3: Calculate \( 7I \) Now, we calculate \( 7I \): \[ 7I = 7 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 7 \cdot 1 & 7 \cdot 0 \\ 7 \cdot 0 & 7 \cdot 1 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} \] ### Step 4: Combine the results to find \( A^2 - 5A + 7I \) Now we can substitute the calculated matrices into the expression \( A^2 - 5A + 7I \): \[ A^2 - 5A + 7I = \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} - \begin{pmatrix} 15 & 5 \\ -5 & 10 \end{pmatrix} + \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} \] Calculating this step by step: 1. First, calculate \( A^2 - 5A \): \[ A^2 - 5A = \begin{pmatrix} 8 - 15 & 5 - 5 \\ -5 - (-5) & 3 - 10 \end{pmatrix} = \begin{pmatrix} -7 & 0 \\ 0 & -7 \end{pmatrix} \] 2. Now add \( 7I \): \[ A^2 - 5A + 7I = \begin{pmatrix} -7 & 0 \\ 0 & -7 \end{pmatrix} + \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} = \begin{pmatrix} -7 + 7 & 0 + 0 \\ 0 + 0 & -7 + 7 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] ### Final Answer Thus, the final result is: \[ A^2 - 5A + 7I = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

Given A=[{:(,2,0),(,-1,7):}] and I=[{:(,1,0),(,0,1):}] and A^2 =9A+mI . Find m.

If A=[{:(4,1),(3,2):}] and I=[{:(1,0),(0,1):}] then A^(2)-6A is equal to : a) 3I b) -5I c) 5I d) none of these

If (A -2I)(A-3I)=0 , when A=[{:(4,2),(-1,x):}] and I=[{:(1,0),(0,1):}] , find the value of x

if A=[{:(3,-1,2),(0,5,-3),(1,-2,7):}]and B=[{:(1,0,0),(0,1,0),(0,0,1):}], find whether AB=BA or Not .

If A = {:((1,-1),(1,2)):} and I={:((1,0),(0,1)):} then 3A^(-1) is equal to :

Given, A=[{:(1,3,5),(-2,0,2),(0,0,-3):}], B = [{:(0,3),(-2,0),(0,-4):}] and C=[{:(4,1,-2),(3,2,1),(2,-1,7):}], find (whichever defined) (i)A+B. (ii)A+C.

If A=[ (3,-2),( 4 ,-2) ] and I=[(1,0),(0,1)] , then prove that A^2-A+2I=O .

If A=[{:(1,2),(4,1):}] , then find A^(2)+2A+7I .

Find AB and BA if exists from the following matrices A and B: (i) A=[{:(2,3,-1),(0,1,2):}]and B=[{:(2,-6),(-4,0):}] (ii) A=[{:(1,2,3),(0,1,-2),(-1,0,-1):}]and B=[{:(0,0,2),(2,0,0),(0,2,0):}] (iii) A=[{:(0,3,4),(2,1,-2),(1,-3,-1):}]and B=[{:(2,1,3),(-1,0,-2):}]

If A = [ (-3 , 2) , (1, -1)] and I = [(1,0) , (0, 1)] , find the scalar k so that A^2 +I = kA .

ICSE-MATRICES-Exercise 9D
  1. If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B, find ma...

    Text Solution

    |

  2. If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(...

    Text Solution

    |

  3. If A=[{:(,1,2),(,2,1):}] and B=[{:(,2,1),(,1,2):}] find : (i) A(BA) ...

    Text Solution

    |

  4. Find x and y, if : [{:(,x,3x),(,y,4y):}] [{:(,2),(,1):}]=[{:(,5),(,12)...

    Text Solution

    |

  5. If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),...

    Text Solution

    |

  6. Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(...

    Text Solution

    |

  7. Find the value of x, given that: A^2=B, A=[{:(,2,12),(,0,1):}] and...

    Text Solution

    |

  8. If A=[{:(,2,5),(,1,3):}], B=[{:(,4,-2),(,-1,3):}] and I is the identif...

    Text Solution

    |

  9. Given A=[{:(,2,-6),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,4,0),(...

    Text Solution

    |

  10. Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(...

    Text Solution

    |

  11. Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}]. Find A^2+AB+B^2

    Text Solution

    |

  12. If A=[{:(,3,a),(,-4,8):}], B=[{:(,c,4),(,-3,0):}] , C=[{:(,-1,4),(,3,b...

    Text Solution

    |

  13. Given A=[{:(,p,0),(,0,2):}], B=[{:(,0,-q),(,1,0):}], C=[{:(,2,-2),(,2,...

    Text Solution

    |

  14. Given A=[{:(,3,-2),(,-1,4):}], B=[{:(,6),(,1):}], C=[{:(,-4),(,-5):}] ...

    Text Solution

    |

  15. Evaluate : [{:(,4 sin 30^@ 2 cos 60^@), (,sin 90^@ 2 cos 0^@):}] ...

    Text Solution

    |

  16. If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}],find A^2-5A+7I.

    Text Solution

    |

  17. Given A=[{:(,2,0),(,-1,7):}] and I=[{:(,1,0),(,0,1):}] and A^2 =9A+mI....

    Text Solution

    |

  18. Given matrix A=[{:(,4sin30^@ cos 0^@),(,cos 0^@ 4 sin 30^@):}] and B=...

    Text Solution

    |

  19. If A=[{:(,1,3),(,3,4):}], B=[{:(,-2,1),(,-3,2):}] and A^2-5B^2=5C. fin...

    Text Solution

    |

  20. Given matrix B=[{:(,1,1),(,8,3):}]. Find the matrix X if, X=B^2-4B. He...

    Text Solution

    |