Home
Class 10
MATHS
If A=[{:(,1,3),(,3,4):}], B=[{:(,-2,1),(...

If `A=[{:(,1,3),(,3,4):}], B=[{:(,-2,1),(,-3,2):}] and A^2-5B^2=5C`. find matrix C where C is a 2 by 2 matrix.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( C \) given the matrices \( A \) and \( B \), and the equation \( A^2 - 5B^2 = 5C \). ### Step 1: Define the matrices \( A \) and \( B \) Given: \[ A = \begin{pmatrix} 1 & 3 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} -2 & 1 \\ -3 & 2 \end{pmatrix} \] ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 1 & 3 \\ 3 & 4 \end{pmatrix} \times \begin{pmatrix} 1 & 3 \\ 3 & 4 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 3 \cdot 3 = 1 + 9 = 10 \) - First row, second column: \( 1 \cdot 3 + 3 \cdot 4 = 3 + 12 = 15 \) - Second row, first column: \( 3 \cdot 1 + 4 \cdot 3 = 3 + 12 = 15 \) - Second row, second column: \( 3 \cdot 3 + 4 \cdot 4 = 9 + 16 = 25 \) Thus, \[ A^2 = \begin{pmatrix} 10 & 15 \\ 15 & 25 \end{pmatrix} \] ### Step 3: Calculate \( B^2 \) Now, we calculate \( B^2 \): \[ B^2 = B \times B = \begin{pmatrix} -2 & 1 \\ -3 & 2 \end{pmatrix} \times \begin{pmatrix} -2 & 1 \\ -3 & 2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( -2 \cdot -2 + 1 \cdot -3 = 4 - 3 = 1 \) - First row, second column: \( -2 \cdot 1 + 1 \cdot 2 = -2 + 2 = 0 \) - Second row, first column: \( -3 \cdot -2 + 2 \cdot -3 = 6 - 6 = 0 \) - Second row, second column: \( -3 \cdot 1 + 2 \cdot 2 = -3 + 4 = 1 \) Thus, \[ B^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 4: Calculate \( 5B^2 \) Now we multiply \( B^2 \) by 5: \[ 5B^2 = 5 \times \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \] ### Step 5: Calculate \( A^2 - 5B^2 \) Now we subtract \( 5B^2 \) from \( A^2 \): \[ A^2 - 5B^2 = \begin{pmatrix} 10 & 15 \\ 15 & 25 \end{pmatrix} - \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 10 - 5 = 5 \) - First row, second column: \( 15 - 0 = 15 \) - Second row, first column: \( 15 - 0 = 15 \) - Second row, second column: \( 25 - 5 = 20 \) Thus, \[ A^2 - 5B^2 = \begin{pmatrix} 5 & 15 \\ 15 & 20 \end{pmatrix} \] ### Step 6: Solve for \( C \) According to the equation \( A^2 - 5B^2 = 5C \), we can express \( C \) as: \[ 5C = A^2 - 5B^2 = \begin{pmatrix} 5 & 15 \\ 15 & 20 \end{pmatrix} \] To find \( C \), we divide each element by 5: \[ C = \frac{1}{5} \begin{pmatrix} 5 & 15 \\ 15 & 20 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 3 & 4 \end{pmatrix} \] ### Final Answer Thus, the matrix \( C \) is: \[ C = \begin{pmatrix} 1 & 3 \\ 3 & 4 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B , find matrix M.

if A=[{:(1,-4,5),(2,1,-3):}]and B=[{:(2,3,-1),(1,2,3):}] then find a matrix C if 2A+3B -4C is a zero matrix.

If A=[{:(1,5),(7,12):}] and B=[{:(9,1),( 7,8):}] then find a matrix C such that 3A+5B+2C is a null matrix.

If A=[{:(1,5),(7,12):}] and B=[{:(9,1),( 7,8):}] then find a matrix C such that 3A+5B+2C is a null matrix.

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

if A=[{:(2,-3),(4,-1):}]and B=[{:(3,0),(-1,2):}], then find matrix C such that 2A-B+3c is a unit matrix.

Given A=[{:(,1,4),(,2,3):}] and B=[{:(,-4,-1),(,-3,-2):}] (i) find the matrix 2A+B. (ii) find a matrix C such that : C+B=[{:(,0,0),(,0,0):}]

If A= [(3,1),(4,0)], B= [(1,-2),(2,3)] and 3A- 5B + 2X= [(4,3),(0,1)] , find the matrix X.

If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,6):}] Find AB-5C.

ICSE-MATRICES-Exercise 9D
  1. If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B, find ma...

    Text Solution

    |

  2. If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(...

    Text Solution

    |

  3. If A=[{:(,1,2),(,2,1):}] and B=[{:(,2,1),(,1,2):}] find : (i) A(BA) ...

    Text Solution

    |

  4. Find x and y, if : [{:(,x,3x),(,y,4y):}] [{:(,2),(,1):}]=[{:(,5),(,12)...

    Text Solution

    |

  5. If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),...

    Text Solution

    |

  6. Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(...

    Text Solution

    |

  7. Find the value of x, given that: A^2=B, A=[{:(,2,12),(,0,1):}] and...

    Text Solution

    |

  8. If A=[{:(,2,5),(,1,3):}], B=[{:(,4,-2),(,-1,3):}] and I is the identif...

    Text Solution

    |

  9. Given A=[{:(,2,-6),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,4,0),(...

    Text Solution

    |

  10. Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(...

    Text Solution

    |

  11. Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}]. Find A^2+AB+B^2

    Text Solution

    |

  12. If A=[{:(,3,a),(,-4,8):}], B=[{:(,c,4),(,-3,0):}] , C=[{:(,-1,4),(,3,b...

    Text Solution

    |

  13. Given A=[{:(,p,0),(,0,2):}], B=[{:(,0,-q),(,1,0):}], C=[{:(,2,-2),(,2,...

    Text Solution

    |

  14. Given A=[{:(,3,-2),(,-1,4):}], B=[{:(,6),(,1):}], C=[{:(,-4),(,-5):}] ...

    Text Solution

    |

  15. Evaluate : [{:(,4 sin 30^@ 2 cos 60^@), (,sin 90^@ 2 cos 0^@):}] ...

    Text Solution

    |

  16. If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}],find A^2-5A+7I.

    Text Solution

    |

  17. Given A=[{:(,2,0),(,-1,7):}] and I=[{:(,1,0),(,0,1):}] and A^2 =9A+mI....

    Text Solution

    |

  18. Given matrix A=[{:(,4sin30^@ cos 0^@),(,cos 0^@ 4 sin 30^@):}] and B=...

    Text Solution

    |

  19. If A=[{:(,1,3),(,3,4):}], B=[{:(,-2,1),(,-3,2):}] and A^2-5B^2=5C. fin...

    Text Solution

    |

  20. Given matrix B=[{:(,1,1),(,8,3):}]. Find the matrix X if, X=B^2-4B. He...

    Text Solution

    |