Home
Class 10
MATHS
Given matrix B=[{:(,1,1),(,8,3):}]. Find...

Given matrix `B=[{:(,1,1),(,8,3):}]`. Find the matrix X if, `X=B^2-4B.` Hence, solve for a and b given `X[{:(,a),(,b):}]=[{:(,5),(,50):}]`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we will follow the instructions given in the question and perform the necessary calculations. ### Step 1: Find \( B^2 \) Given the matrix \( B = \begin{pmatrix} 1 & 8 \\ 1 & 3 \end{pmatrix} \), we need to calculate \( B^2 \) by multiplying \( B \) with itself. \[ B^2 = B \times B = \begin{pmatrix} 1 & 8 \\ 1 & 3 \end{pmatrix} \times \begin{pmatrix} 1 & 8 \\ 1 & 3 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \times 1 + 8 \times 1 = 1 + 8 = 9 \) - First row, second column: \( 1 \times 8 + 8 \times 3 = 8 + 24 = 32 \) - Second row, first column: \( 1 \times 1 + 3 \times 1 = 1 + 3 = 4 \) - Second row, second column: \( 1 \times 8 + 3 \times 3 = 8 + 9 = 17 \) Thus, we have: \[ B^2 = \begin{pmatrix} 9 & 32 \\ 4 & 17 \end{pmatrix} \] ### Step 2: Calculate \( 4B \) Next, we calculate \( 4B \): \[ 4B = 4 \times \begin{pmatrix} 1 & 8 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 4 \times 1 & 4 \times 8 \\ 4 \times 1 & 4 \times 3 \end{pmatrix} = \begin{pmatrix} 4 & 32 \\ 4 & 12 \end{pmatrix} \] ### Step 3: Calculate \( X = B^2 - 4B \) Now we can find \( X \): \[ X = B^2 - 4B = \begin{pmatrix} 9 & 32 \\ 4 & 17 \end{pmatrix} - \begin{pmatrix} 4 & 32 \\ 4 & 12 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 9 - 4 = 5 \) - First row, second column: \( 32 - 32 = 0 \) - Second row, first column: \( 4 - 4 = 0 \) - Second row, second column: \( 17 - 12 = 5 \) Thus, we have: \[ X = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \] ### Step 4: Solve for \( a \) and \( b \) We are given that: \[ X \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 5 \\ 50 \end{pmatrix} \] Substituting \( X \): \[ \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 5 \\ 50 \end{pmatrix} \] This results in the following equations: 1. \( 5a = 5 \) 2. \( 5b = 50 \) From the first equation: \[ a = \frac{5}{5} = 1 \] From the second equation: \[ b = \frac{50}{5} = 10 \] ### Final Answer: Thus, the values of \( a \) and \( b \) are: \[ a = 1, \quad b = 10 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0 . Hence find A^(-1)

Given matrix A=[{:(,5),(,-3):}] and matrix B=[{:(,-1),(,7):}] find matrix X such that : A+2X=B.

(i) if A+B=[{:(3,4),(-1,0):}]and A-B =[{:(1,2),(5,6):}], then find the matrix A and B. (ii) if X+Y=[{:(2,1),(1,2):}]and 2X-Y=[{:(1,2),(2,1):}] then find X and Y .

Find the value of x, given that: A^2=B, A=[{:(,2,12),(,0,1):}] and B=[{:(,4,x),(,0,1):}]

Given A= [(3,4),(4,-3)] and B= [(24),(7)] , find the matrix X such that AX= B.

Given A=[{:(,1,4),(,2,3):}] and B=[{:(,-4,-1),(,-3,-2):}] (i) find the matrix 2A+B. (ii) find a matrix C such that : C+B=[{:(,0,0),(,0,0):}]

If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is skew-symmetric matrix, then find the values of a,b and c,

Given A= [(3,6),(-2,-8)] and B= [-2" " 16] , find the matrix X such that XA= B

Matrix A=[(0, 2b,-2) ,(3 ,1, 3), (3a,3,-1)] is given to be symmetric, find the values of a and b .

If A=[{:(,2,1),(,1,3):}] and B=[ {: (, 3),(,-11 ):}] . find the matrix X such that AX=B.

ICSE-MATRICES-Exercise 9D
  1. If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B, find ma...

    Text Solution

    |

  2. If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(...

    Text Solution

    |

  3. If A=[{:(,1,2),(,2,1):}] and B=[{:(,2,1),(,1,2):}] find : (i) A(BA) ...

    Text Solution

    |

  4. Find x and y, if : [{:(,x,3x),(,y,4y):}] [{:(,2),(,1):}]=[{:(,5),(,12)...

    Text Solution

    |

  5. If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),...

    Text Solution

    |

  6. Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(...

    Text Solution

    |

  7. Find the value of x, given that: A^2=B, A=[{:(,2,12),(,0,1):}] and...

    Text Solution

    |

  8. If A=[{:(,2,5),(,1,3):}], B=[{:(,4,-2),(,-1,3):}] and I is the identif...

    Text Solution

    |

  9. Given A=[{:(,2,-6),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,4,0),(...

    Text Solution

    |

  10. Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(...

    Text Solution

    |

  11. Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}]. Find A^2+AB+B^2

    Text Solution

    |

  12. If A=[{:(,3,a),(,-4,8):}], B=[{:(,c,4),(,-3,0):}] , C=[{:(,-1,4),(,3,b...

    Text Solution

    |

  13. Given A=[{:(,p,0),(,0,2):}], B=[{:(,0,-q),(,1,0):}], C=[{:(,2,-2),(,2,...

    Text Solution

    |

  14. Given A=[{:(,3,-2),(,-1,4):}], B=[{:(,6),(,1):}], C=[{:(,-4),(,-5):}] ...

    Text Solution

    |

  15. Evaluate : [{:(,4 sin 30^@ 2 cos 60^@), (,sin 90^@ 2 cos 0^@):}] ...

    Text Solution

    |

  16. If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}],find A^2-5A+7I.

    Text Solution

    |

  17. Given A=[{:(,2,0),(,-1,7):}] and I=[{:(,1,0),(,0,1):}] and A^2 =9A+mI....

    Text Solution

    |

  18. Given matrix A=[{:(,4sin30^@ cos 0^@),(,cos 0^@ 4 sin 30^@):}] and B=...

    Text Solution

    |

  19. If A=[{:(,1,3),(,3,4):}], B=[{:(,-2,1),(,-3,2):}] and A^2-5B^2=5C. fin...

    Text Solution

    |

  20. Given matrix B=[{:(,1,1),(,8,3):}]. Find the matrix X if, X=B^2-4B. He...

    Text Solution

    |