Home
Class 12
MATHS
Delta=|{:(p,q,r),(p+2a,q+2b,r+2c),(a,b,c...

`Delta=|{:(p,q,r),(p+2a,q+2b,r+2c),(a,b,c):}|` then

A

a) `Delta=0`

B

b) `Delta=abc`

C

c) `Delta=pqr`

D

d) None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinant: \[ \Delta = \begin{vmatrix} p & q & r \\ p + 2a & q + 2b & r + 2c \\ a & b & c \end{vmatrix} \] ### Step 1: Write the determinant We start with the determinant as given: \[ \Delta = \begin{vmatrix} p & q & r \\ p + 2a & q + 2b & r + 2c \\ a & b & c \end{vmatrix} \] ### Step 2: Apply row operations We will perform a row operation to simplify the determinant. Let's subtract the first row from the second row after multiplying the third row by 2. This means we will replace the second row \( R_2 \) with \( R_2 - R_1 - 2R_3 \). \[ R_2 = R_2 - R_1 - 2R_3 \] Calculating the new second row: - First element: \( (p + 2a) - p - 2a = 0 \) - Second element: \( (q + 2b) - q - 2b = 0 \) - Third element: \( (r + 2c) - r - 2c = 0 \) Thus, the determinant becomes: \[ \Delta = \begin{vmatrix} p & q & r \\ 0 & 0 & 0 \\ a & b & c \end{vmatrix} \] ### Step 3: Evaluate the determinant Now, we can see that the second row is entirely zeros. The property of determinants states that if any row (or column) of a determinant is all zeros, then the value of that determinant is zero. Thus, we have: \[ \Delta = 0 \] ### Conclusion Therefore, we conclude that: \[ \Delta = 0 \] ### Final Answer The correct option is (a) \( \Delta = 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -B (65 MARKS)|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

If Delta=|(a,p,x),(b,q,y),(c,r,z)|=16 then Delta_(1)=|(p+x,a+x,a+p),(q+y,b+y,b+q),(r+z,c+z,c+r)|=32

If Delta=|(a,p,x),(b,q,y),(c,r,z)|=16 then Delta_(1)=|(p+x,a+x,a+p),(q+y,b+y,b+q),(r+z,c+z,c+r)|=32

a!=p , b!=q,c!=r and |(p,b,c),(a,q,c),(a,b,r)|=0 the value of p/(p-a)+q/(q-b)+r/(r-c)=

If |{:(a-b,b-c,c-a),(x-y,y-z,z-x),(p-q,q-r,r-p):}|=m|{:(c,a,b),(z,x,y),(r,p,q):}|," then m"=

Let A=[{:(a,b,c),(p,q,r),(1,1,1):}]and B=A^(2) If (a-b)^(2) +(p-q)^(2) =25, (b-c) ^(2)+ (q-r)^(2)= 36 and (c-a)^(2) +(r-p)^(2)=49, then det B is

If A = |(a,b,c),(x,y,z),(p,q,r)| and B = |(q,-b,y),(-p,a,-x),(r,-c,z)| , then

If a!=p ,b!=q ,c!=r and |[p, b, c ],[a, q, c ],[a ,b, r]|=0, then find the value of p/(p-a)+q/(q-b)+r/(r-c)dot

Without, prove that : |{:(1+b,b+c,c+a),(p+q,q+r,r+p),(x+y,y+z,z+x),:}|=2|{:(a,b,c),(p,q,r),(x,y,z):}|

If |[p, b, c],[ a, q, c],[ a, b, r]|=0, find the value of p/(p-a)+q/(q-b)+r/(r-c),p!=a ,q!=b ,r!=c dot

If Delta_1=|[a, b, c],[ x, y, z],[ p, q, r]| and Delta_2=|[q,-b, y],[-p, a,-x],[ r,-c, z]|, without expanding or evaluating Delta_1 and Delta_2 , show that Delta_1+Delta_2=0