Home
Class 12
MATHS
matrix A=({:(-i,0),(0,-i):}) then A^2 =...

matrix `A=({:(-i,0),(0,-i):})` then `A^2` =

A

2I

B

`-I`

C

I

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^2 \) for the matrix \( A = \begin{pmatrix} -i & 0 \\ 0 & -i \end{pmatrix} \), we will perform matrix multiplication. ### Step 1: Write down the matrix multiplication We need to compute \( A^2 = A \times A \): \[ A^2 = \begin{pmatrix} -i & 0 \\ 0 & -i \end{pmatrix} \times \begin{pmatrix} -i & 0 \\ 0 & -i \end{pmatrix} \] ### Step 2: Perform the multiplication Using the rules of matrix multiplication, we calculate each element of the resulting matrix: 1. **First row, first column**: \[ (-i) \times (-i) + 0 \times 0 = i^2 = -1 \] 2. **First row, second column**: \[ (-i) \times 0 + 0 \times (-i) = 0 + 0 = 0 \] 3. **Second row, first column**: \[ 0 \times (-i) + (-i) \times 0 = 0 + 0 = 0 \] 4. **Second row, second column**: \[ 0 \times 0 + (-i) \times (-i) = 0 + i^2 = -1 \] ### Step 3: Combine the results Putting all the calculated elements together, we get: \[ A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \] ### Final Result Thus, the final result is: \[ A^2 = -I = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -B (65 MARKS)|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

The identity matrix I_(2)={:[(1,0),(0,1)]:} . If A={:[(2,-3),(5,1)]:} , evaluate AI_(2)=I_(2)A=A

the matrix A=[(i,1-2i),(-1-2i,0)], where I = sqrt-1, is

The matrix A=[{:(0,0,2),(0,2,0),(2,0,0):}] is: a) scalar matrix b) diagonal matrix c) square matrix d) none of these

The matrix A=[{:(1,0,0),(0,2,0),(0,0,3):}] is: a) scalar matrix b) symmetric matrix c) skew symmetric matrix d) none f these

If a matrix A=((3,2,0),(1,4,0),(0,0,5)) show that A^2-7A+10I_(3) = 0 and hence find A^(-1)

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

If matrix A = [a_(i j)]_(2 xx 2) , where a_(i j) = {("1 if",i ne j),("0 if",i = j):} then A^(2) is equal to

Given A=[{:(,1,4),(,2,3):}] and B=[{:(,-4,-1),(,-3,-2):}] (i) find the matrix 2A+B. (ii) find a matrix C such that : C+B=[{:(,0,0),(,0,0):}]

If P=[(i,0,-i),(0,-i,i),(-i,i,0)] and Q=[(-i,i),(0,0),(i,-i)] then PQ is equal to (A) [(-2,2),(1,-1),(1,-1)] (B) [(2,-2),(-1,1),(-1,1)] (C) [(2,2),(-1,1)] (D) [(1,0,0),(0,1,0),(0,0,1)]

If A=[(i,0), (0,i)],\ n in N , then A^(4n) equals [(0,i), (i,0)] (b) [(0 ,0) ,(0, 0)] (c) [(1, 0) ,(0, 1)] (d) [(0,i) ,(i,0)]