Home
Class 12
MATHS
Prove that tan^(-1)1+tan^(-1)2+tan^(-1)3...

Prove that `tan^(-1)1+tan^(-1)2+tan^(-1)3 =pi`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi \), we can follow these steps: ### Step 1: Set Variables Let: \[ x = \tan^{-1}(1), \quad y = \tan^{-1}(2), \quad z = \tan^{-1}(3) \] ### Step 2: Express Tangents From the definitions of the inverse tangent: \[ \tan(x) = 1, \quad \tan(y) = 2, \quad \tan(z) = 3 \] ### Step 3: Use the Tangent Addition Formula We will use the tangent addition formula: \[ \tan(x + y + z) = \frac{\tan(x) + \tan(y) + \tan(z) - \tan(x)\tan(y)\tan(z)}{1 - \tan(x)\tan(y) - \tan(y)\tan(z) - \tan(z)\tan(x)} \] ### Step 4: Substitute Values Substituting the values of \( \tan(x) \), \( \tan(y) \), and \( \tan(z) \): \[ \tan(x + y + z) = \frac{1 + 2 + 3 - (1)(2)(3)}{1 - (1)(2) - (2)(3) - (3)(1)} \] ### Step 5: Simplify the Numerator Calculating the numerator: \[ 1 + 2 + 3 = 6 \] \[ (1)(2)(3) = 6 \] Thus, the numerator becomes: \[ 6 - 6 = 0 \] ### Step 6: Simplify the Denominator Calculating the denominator: \[ 1 - (1)(2) - (2)(3) - (3)(1) = 1 - 2 - 6 - 3 = 1 - 11 = -10 \] ### Step 7: Final Calculation Now substituting back into the tangent formula: \[ \tan(x + y + z) = \frac{0}{-10} = 0 \] ### Step 8: Conclusion Since \( \tan(x + y + z) = 0 \), it implies: \[ x + y + z = n\pi \quad \text{for some integer } n \] Given that \( x = \tan^{-1}(1) \), \( y = \tan^{-1}(2) \), and \( z = \tan^{-1}(3) \) are all positive angles, we conclude: \[ x + y + z = \pi \] Thus, we have: \[ \tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi \] ### Final Statement Therefore, we have proved that: \[ \tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -B (65 MARKS)|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that: tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4

Prove that: tan^(-1) (1/2tan2A) + tan^(-1) (cotA) + tan^(-1) (cot^3A) =0

Prove that tan^(-1) x + tan^(-1).(1)/(x) = {(pi//2,"if" x gt 0),(-pi//2," if " x lt 0):}

The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that : tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4