Home
Class 12
MATHS
Differentiate tan^(-1)(( sqrt(1+x^(2))-1...

Differentiate `tan^(-1)(( sqrt(1+x^(2))-1)/(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \), we will follow these steps: ### Step 1: Rewrite the expression Let: \[ y = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \] ### Step 2: Use a trigonometric substitution We can set \( x = \tan(\theta) \). Then, we have: \[ \sqrt{1+x^2} = \sqrt{1+\tan^2(\theta)} = \sec(\theta) \] Thus, we can rewrite \( y \): \[ y = \tan^{-1}\left(\frac{\sec(\theta) - 1}{\tan(\theta)}\right) \] ### Step 3: Simplify the expression Now, we can simplify the fraction: \[ \frac{\sec(\theta) - 1}{\tan(\theta)} = \frac{\sec(\theta) - 1}{\frac{\sin(\theta)}{\cos(\theta)}} = \frac{(\sec(\theta) - 1) \cos(\theta)}{\sin(\theta)} \] This simplifies to: \[ \frac{1 - \cos(\theta)}{\sin(\theta)} \] ### Step 4: Use the identity for \( 1 - \cos(\theta) \) Using the identity \( 1 - \cos(\theta) = 2\sin^2\left(\frac{\theta}{2}\right) \): \[ y = \tan^{-1}\left(\frac{2\sin^2\left(\frac{\theta}{2}\right)}{\sin(\theta)}\right) \] And since \( \sin(\theta) = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) \): \[ y = \tan^{-1}\left(\frac{2\sin^2\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}\right) = \tan^{-1}\left(\frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)}\right) = \tan^{-1}(\tan\left(\frac{\theta}{2}\right)) \] ### Step 5: Simplify further This implies: \[ y = \frac{\theta}{2} \] Since \( \theta = \tan^{-1}(x) \): \[ y = \frac{1}{2} \tan^{-1}(x) \] ### Step 6: Differentiate with respect to \( x \) Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{1+x^2} \] ### Final Answer Thus, the derivative is: \[ \frac{dy}{dx} = \frac{1}{2(1+x^2)} \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -B (65 MARKS)|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).

Differentiate tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))} with respect to cos^(-1)x^2

Differentiate tan^-1((4sqrt(x))/(1-4x))

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to cos^(-1)(2x^(2)-1) .

Differentiate tan^(-1){x/(1+sqrt(1-x^2))},\ -1

If x in (1/(sqrt(2)),\ 1) , differentiate tan^(-1)((sqrt(1-x^2))/x) with respect to cos^(-1)(2xsqrt(1-x^2)) .

Differentiate tan^(-1)(x/(sqrt(1-x^2))) with respect to sin^(-1)(2xsqrt(1-x^2)), if -1/(sqrt(2)) < x< 1 /(sqrt(2))

Differentiate tan^-1sqrt((1-x^2)/(1+x^2)) with respect to cos^-1""x^2

Differentiate tan^(-1)x/(1+sqrt((1-x^2))) +{2tan^(-1)sqrt(((1-x)/(1+x)))}sinwdotrdottdotxdot

Differentiate tan^(-1){sqrt((1+sinx)/(1-sinx))},\ -pi/2