Home
Class 12
MATHS
Evaluate : int(0)^(1)x(1-x)^(n)dx...

Evaluate : `int_(0)^(1)x(1-x)^(n)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_0^1 x(1-x)^n \, dx \), we can use a property of definite integrals. Let's go through the steps systematically. ### Step 1: Use the property of definite integrals We can use the property that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] In our case, \( a = 1 \). Thus, we can rewrite the integral as: \[ I = \int_0^1 x(1-x)^n \, dx = \int_0^1 (1-x)(1-(1-x))^n \, dx \] ### Step 2: Substitute and simplify Now let's substitute \( 1 - x \) in place of \( x \): \[ I = \int_0^1 (1-x)x^n \, dx \] This gives us: \[ I = \int_0^1 (1-x)x^n \, dx \] ### Step 3: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_0^1 x(1-x)^n \, dx \) 2. \( I = \int_0^1 (1-x)x^n \, dx \) Adding these two equations: \[ 2I = \int_0^1 [x(1-x)^n + (1-x)x^n] \, dx \] ### Step 4: Factor the integrand The integrand can be factored: \[ x(1-x)^n + (1-x)x^n = x(1-x) \left( (1-x)^{n-1} + x^{n-1} \right) \] Thus: \[ 2I = \int_0^1 x(1-x) \left( (1-x)^{n-1} + x^{n-1} \right) \, dx \] ### Step 5: Evaluate the integral Now we can evaluate the integral: \[ 2I = \int_0^1 x(1-x) \, dx \cdot \int_0^1 \left( (1-x)^{n-1} + x^{n-1} \right) \, dx \] The integral \( \int_0^1 x(1-x) \, dx \) can be calculated as follows: \[ \int_0^1 x(1-x) \, dx = \left[ \frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 = \frac{1}{2} - \frac{1}{3} = \frac{1}{6} \] ### Step 6: Calculate the remaining integrals The integrals \( \int_0^1 (1-x)^{n-1} \, dx \) and \( \int_0^1 x^{n-1} \, dx \) can be computed using the beta function or directly: \[ \int_0^1 (1-x)^{n-1} \, dx = \frac{1}{n} \] \[ \int_0^1 x^{n-1} \, dx = \frac{1}{n} \] Thus: \[ 2I = \frac{1}{6} \left( \frac{1}{n} + \frac{1}{n} \right) = \frac{1}{6} \cdot \frac{2}{n} = \frac{1}{3n} \] ### Step 7: Solve for \( I \) Finally, we can solve for \( I \): \[ I = \frac{1}{6n} \] ### Final Answer Thus, the value of the integral is: \[ \int_0^1 x(1-x)^n \, dx = \frac{1}{6n} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -B (65 MARKS)|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(1)(tx+1-x)^(n)dx , where n is a positive integer and t is a parameter independent of x . Hence , show that ∫ 0 1 ​ x k (1−x) n−k dx= [ n C k ​ (n+1)] P ​ fork=0,1,......n, then P=

Evaluate : int_(0)^(1) (1-x)^(3//2) dx

Evaluate :- int_(0)^(1)(3x^(2)+4)dx

Evaluate : int_0^1x(1-x)^5dx

Evaluate : int_0^1x(1-x)^5dx

Evaluate : int_0^1x(1-x)^5dx

Evaluate : int_(-1)^(1)e^(x)dx

Evaluate: int_0^1x(1-x)^n dx

Evaluate : int_(0)^(1)((tan^(-1)x)^(2))/(1+x^(2))dx

Evaluate: int_(4)^(1)1/x dx