Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, pro...

If `sin^(-1)x+sin^(-1)y+sin^(-1)z=pi`, prove that `x^(2)-y^(2)+z^(2)-2xz sqrt(1-y^(2))=0`

Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -B (65 MARKS)|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^(2)+y^(2)+z^(2)+2xyz=1

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)=2x y z

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2, find the value of x^2+y^2+z^2

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2), then A=x^(2)+y^(2)+z^(2) . (sin^(-1)x)^(2)+(sin^(-1)y)^(2)+(sin^(-1)z)^(2)=(3pi^(2))/(4) , then B=|(x+y+z)_("min")| . Then the value of (A+B) is _____________ .

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-y^2) + y sqrt(1-x^2) =1 .

if, sin^-1x + sin^-1y + sin^-1z =pi then prove that xsqrt(1-x^2) + ysqrt(1-y^2) + zsqrt(1-z^2) =2xyz.

Q. if sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then