Home
Class 12
MATHS
Evaluate : int(0)^((pi)/(2)) (x sin x.co...

Evaluate : `int_(0)^((pi)/(2)) (x sin x.cosx)/(sin^(4)x+cos^(4)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx, \] we can use the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] ### Step 1: Apply the property Using the property, we can rewrite the integral \(I\): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{(\frac{\pi}{2} - x) \sin(\frac{\pi}{2} - x) \cos(\frac{\pi}{2} - x)}{\sin^4(\frac{\pi}{2} - x) + \cos^4(\frac{\pi}{2} - x)} \, dx. \] ### Step 2: Simplify the expression Using the identities \(\sin(\frac{\pi}{2} - x) = \cos x\) and \(\cos(\frac{\pi}{2} - x) = \sin x\), we can substitute: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\left(\frac{\pi}{2} - x\right) \cos x \sin x}{\cos^4 x + \sin^4 x} \, dx. \] ### Step 3: Combine the two integrals Now we have two expressions for \(I\): 1. \(I = \int_{0}^{\frac{\pi}{2}} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx\) 2. \(I = \int_{0}^{\frac{\pi}{2}} \frac{\left(\frac{\pi}{2} - x\right) \cos x \sin x}{\cos^4 x + \sin^4 x} \, dx\) Adding these two equations: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\left(\frac{\pi}{2}\right) \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx. \] ### Step 4: Factor out constants We can factor out \(\frac{\pi}{2}\): \[ 2I = \frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} \, dx. \] ### Step 5: Evaluate the integral Now, we need to evaluate the integral: \[ \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} \, dx. \] ### Step 6: Simplify the denominator Notice that: \[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x = 1 - 2\sin^2 x \cos^2 x. \] Thus, the integral becomes: \[ \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{1 - 2\sin^2 x \cos^2 x} \, dx. \] ### Step 7: Use substitution Let \(u = \sin^2 x\), then \(du = 2\sin x \cos x \, dx\). The limits change from \(0\) to \(1\): \[ \int_{0}^{1} \frac{1}{1 - 2u(1-u)} \frac{du}{2} = \frac{1}{2} \int_{0}^{1} \frac{1}{1 - 2u + 2u^2} \, du. \] ### Step 8: Evaluate the integral This can be evaluated using partial fractions or recognizing it as a standard integral. ### Step 9: Final calculation After evaluating the integral, we find: \[ I = \frac{\pi^2}{16}. \] ### Conclusion Thus, the final result is: \[ \boxed{\frac{\pi^2}{16}}. \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -B (65 MARKS)|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x cos x dx

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

Evaluate : int_0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

Using properties of definite integrals, evaluate: int_(0)^(pi//2) (sin x - cos x)/(1+sin x cos x) dx

Evaluate: int_0^(pi//2)(xsinx cos\ x)/(sin^4x+cos^4x)dx

Evaluate : int_(0)^(pi/2)(sin^2x-cos^2x)/(sin^3x+cos^3x)dx

Evaluate: int_0^(pi//2)(xsinxcosx)/(sin^4x+cos^4x)dx

int_(0)^( pi/2)(sin^(1/4)x)/(sin^(1/4)x+cos^(1/4)x)dx

Evaluate : int_0^(pi/4)(sinxcosx)/(sin^4x+cos^4x)\ dx

Evaluate : int_0^(pi/2)(sin^2x)/(sin x+cos x)dx