Home
Class 12
MATHS
Using elementary transformations, find t...

Using elementary transformations, find the inverse of the matrix. `({:(0,0,-1),(3,4,5),(-2,-4,-7):})`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 0 & 0 & -1 \\ 3 & 4 & 5 \\ -2 & -4 & -7 \end{pmatrix} \) using elementary transformations, we will follow these steps: ### Step 1: Form the Augmented Matrix We start by forming the augmented matrix \( [A | I] \), where \( I \) is the identity matrix of the same size as \( A \). \[ [A | I] = \begin{pmatrix} 0 & 0 & -1 & | & 1 & 0 & 0 \\ 3 & 4 & 5 & | & 0 & 1 & 0 \\ -2 & -4 & -7 & | & 0 & 0 & 1 \end{pmatrix} \] ### Step 2: Apply Elementary Row Operations We will use elementary row operations to transform the left side of the augmented matrix into the identity matrix. 1. **Swap Row 1 and Row 2** to get a leading 1 in the first row: \[ R_1 \leftrightarrow R_2 \] Resulting matrix: \[ \begin{pmatrix} 3 & 4 & 5 & | & 0 & 1 & 0 \\ 0 & 0 & -1 & | & 1 & 0 & 0 \\ -2 & -4 & -7 & | & 0 & 0 & 1 \end{pmatrix} \] 2. **Make the first column below the leading 1 zero**: - For Row 3: \( R_3 + \frac{2}{3} R_1 \) \[ R_3 \rightarrow R_3 + \frac{2}{3} R_1 \] Resulting matrix: \[ \begin{pmatrix} 3 & 4 & 5 & | & 0 & 1 & 0 \\ 0 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 0 & -\frac{1}{3} & | & 0 & \frac{2}{3} & 1 \end{pmatrix} \] 3. **Scale Row 1 to make the leading coefficient 1**: \[ R_1 \rightarrow \frac{1}{3} R_1 \] Resulting matrix: \[ \begin{pmatrix} 1 & \frac{4}{3} & \frac{5}{3} & | & 0 & \frac{1}{3} & 0 \\ 0 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 0 & -\frac{1}{3} & | & 0 & \frac{2}{3} & 1 \end{pmatrix} \] 4. **Make the third row leading coefficient positive**: \[ R_2 \rightarrow -R_2 \] Resulting matrix: \[ \begin{pmatrix} 1 & \frac{4}{3} & \frac{5}{3} & | & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 & | & -1 & 0 & 0 \\ 0 & 0 & -\frac{1}{3} & | & 0 & \frac{2}{3} & 1 \end{pmatrix} \] 5. **Eliminate the third column in Row 1 and Row 3**: - For Row 1: \( R_1 - \frac{5}{3} R_2 \) - For Row 3: \( R_3 + \frac{1}{3} R_2 \) Resulting matrix: \[ \begin{pmatrix} 1 & \frac{4}{3} & 0 & | & \frac{5}{3} & \frac{1}{3} & 0 \\ 0 & 0 & 1 & | & -1 & 0 & 0 \\ 0 & 0 & 0 & | & -\frac{1}{3} & \frac{2}{3} & 1 \end{pmatrix} \] 6. **Make Row 3 leading coefficient 1**: \[ R_3 \rightarrow -3 R_3 \] Resulting matrix: \[ \begin{pmatrix} 1 & \frac{4}{3} & 0 & | & \frac{5}{3} & \frac{1}{3} & 0 \\ 0 & 0 & 1 & | & -1 & 0 & 0 \\ 0 & 0 & 0 & | & 1 & -2 & -3 \end{pmatrix} \] 7. **Make the second column leading coefficient zero**: - For Row 1: \( R_1 - \frac{4}{3} R_2 \) Resulting matrix: \[ \begin{pmatrix} 1 & 0 & 0 & | & 5 & 3 & 4 \\ 0 & 0 & 1 & | & -1 & 0 & 0 \\ 0 & 0 & 0 & | & 1 & -2 & -3 \end{pmatrix} \] ### Step 3: Extract the Inverse The right side of the augmented matrix now represents the inverse of \( A \): \[ A^{-1} = \begin{pmatrix} 5 & 3 & 4 \\ -1 & 0 & 0 \\ 1 & -2 & -3 \end{pmatrix} \] ### Summary Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} 5 & 3 & 4 \\ -1 & 0 & 0 \\ 1 & -2 & -3 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -B (65 MARKS)|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformations, find the inverse of the matrix : [(2,0,-1),(5, 1, 0),(0, 1, 3)]

Using elementary transformations, find the inverse of the matrix [[1,-1],[ 2, 3]]

Using elementary transformations, find the inverse of the matrix [[2,-3],[-1, 2]]

Using elementary transformations, find the inverse of the matrix [[3,-1],[-4, 2]]

Using elementary transformations, find the inverse of the matrix [[3,-1],[-4, 2]]

Using elementary transformations, find the inverse of the matrix [[6,-3],[-2, 1]]

Using elementary transformations, find the inverse of the matrix [[2, 1],[ 1, 1]]

Using elementry transformation, find the inverse of the matrix. [{:(,0,1,2),(,1,2,3),(,3,1,1,):}]