Home
Class 12
MATHS
Evaluate : int(dx)/(sinx+sin2x)...

Evaluate : `int(dx)/(sinx+sin2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{dx}{\sin x + \sin 2x} \] we will follow these steps: ### Step 1: Rewrite \(\sin 2x\) We know that \[ \sin 2x = 2 \sin x \cos x \] So we can rewrite the integral as: \[ I = \int \frac{dx}{\sin x + 2 \sin x \cos x} \] ### Step 2: Factor out \(\sin x\) Factoring out \(\sin x\) from the denominator gives us: \[ I = \int \frac{dx}{\sin x (1 + 2 \cos x)} \] ### Step 3: Multiply numerator and denominator by \(\sin x\) Now, we multiply the numerator and denominator by \(\sin x\): \[ I = \int \frac{\sin x \, dx}{\sin^2 x (1 + 2 \cos x)} \] ### Step 4: Substitute \(\cos x = p\) Let \(p = \cos x\). Then, \(dx = -\frac{1}{\sin x} dp\). Thus, we can rewrite the integral: \[ I = \int \frac{-dp}{(1 - p^2)(1 + 2p)} \] ### Step 5: Use partial fractions We will express the integrand using partial fractions: \[ \frac{1}{(1 - p^2)(1 + 2p)} = \frac{A}{1 - p} + \frac{B}{1 + p} + \frac{C}{1 + 2p} \] Multiplying through by the denominator gives: \[ 1 = A(1 + p)(1 + 2p) + B(1 - p)(1 + 2p) + C(1 - p^2) \] ### Step 6: Solve for coefficients To find \(A\), \(B\), and \(C\), we can substitute convenient values for \(p\) (like \(p = 1\), \(p = -1\), and \(p = -\frac{1}{2}\)) and solve the resulting equations. ### Step 7: Integrate each term Once we have \(A\), \(B\), and \(C\), we can integrate each term separately: \[ I = \int \left( \frac{A}{1 - p} + \frac{B}{1 + p} + \frac{C}{1 + 2p} \right) dp \] ### Step 8: Substitute back After integrating, we substitute back \(p = \cos x\) to express the integral in terms of \(x\). ### Final Result The final result will be: \[ I = \frac{1}{6} \ln |1 - \cos x| + \frac{1}{2} \ln |1 + \cos x| - \frac{2}{3} \ln |1 + 2 \cos x| + C \] where \(C\) is the constant of integration. ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -B (65 MARKS)|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: inte^(2x)sinx\ dx

Evaluate: inte^(2x)sinx\ dx

Evaluate: int1/(sinx+sin2x)\ dx

Evaluate: int1/(sinx+sin2x)\ dx

Evaluate: int(sin4x)/(sinx)\ dx

Evaluate: int1/(sin^2x+sin2x)dx

Evaluate: int1/(sinx-sin2x)dx

Evaluate: int1/(sinx-sin2x)dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx